Low-density series expansions for directed percolation on square and triangular lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 297013
(http://iopscience.iop.org/0305-4470/29/22/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 04:04

Please note that terms and conditions apply.

# Low-density series expansions for directed percolation on square and triangular lattices 

Iwan Jensen $\dagger$<br>Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

Received 23 May 1996


#### Abstract

Greatly extended series have been derived for moments of the pair-connectedness for bond and site percolation on the directed square and triangular lattices. The length of the various series has been at least doubled to more than 110 (100) terms for the square-lattice bond (site) problem and more than 55 terms for the bond and site problems on the triangular lattice. Analysis of the series leads to very accurate estimates for the critical parameters and generally seems to rule out simple rational values for the critical exponents. The values of the critical exponents for the average cluster size, parallel and perpendicular connectedness lengths are estimated by $\gamma=2.27769(4), \nu_{\|}=1.733825(25)$ and $\nu_{\perp}=1.096844(14)$, respectively. An improved estimate for the percolation probability exponent is obtained from the scaling relation $\beta=\left(v_{\|}+v_{\perp}-\gamma\right) / 2=0.27649(4)$. In all cases the leading correction to scaling term is analytic.


## 1. Introduction

Models exhibiting critical behaviour similar to directed percolation (DP) are encountered in a wide variety of problems such as fluid flow in porous media, Reggeon field theory, chemical reactions, population dynamics, catalysis, epidemics, forest fires, and even galactic evolution. Directed percolation is thus a model of relevance to a very diverse set of physical problems and it is therefore no wonder that it continues to attract a great deal of attention. Furthermore, two-dimensional directed percolation is one of the simplest models which is not translationally invariant and therefore cannot be treated in the framework of conformal field theory [1]. This leaves open a number of fundamental questions about this model. What should one expect an exact solution to look like and more concretely are the critical exponents rational?

In the absence of an exact solution the most powerful method for studying latticestatistics models is probably that of series expansions. The method of exact series expansions consists of calculating the first few coefficients in the Taylor expansion of various thermodynamic functions, or, in more abstract terms, various moments of some appropriate generating function. Given such a series, highly accurate estimates can be obtained for the critical parameters using differential approximants [2]. In the most favourable cases one can even find an exact expression for the generating function from the first-series coefficients.

Low-density series in the variable $p$, which is the probability that bonds or sites are present, were first derived by Blease [3], who used a transfer-matrix method to calculate series for the cluster size and other moments of the pair-connectedness of bond percolation

[^0]on directed square and triangular lattices. These series were greatly extended by Essam et al [4], who also studied site percolation. They devised a non-nodal graph expansion, which enabled them to calculate twice as many terms correctly from the basic transfer-matrix calculation, and derived the series to order 49 (48) for the square bond (site) problem and to order 25 (26) for the triangular bond (site) problem. These long series resulted in accurate exponent estimates and led to the conjectured critical exponents $\gamma=41 / 18, v_{\perp}=79 / 72$, $\nu_{\|}=26 / 15$, and $\beta=199 / 720$ [4].

High-density series for the percolation probability were derived by Blease [3]. The square bond series was greatly extended by Baxter and Guttmann [5] using a superior transfer-matrix method and an extrapolation procedure based on predicting correction terms from successive calculations on finite lattices of increasing size. The analysis of the resulting series conformed to the conjectured fraction for $\beta$. This series and the one for the square site problem were recently extended by Jensen and Guttmann [6] who also studied the triangular bond and site problems [7]. The analysis of these extended series yielded more precise exponent estimates. From these estimates they concluded that there are no simple rational fractions whose decimal expansion agrees with the highly accurate estimates of $\beta$ obtained from the square bond and triangular site series. In particular, the rational fraction suggested by Essam et al [4] is incompatible with the estimates.

In this paper I combine an efficient transfer-matrix calculation with the non-nodal graph expansion and the above-mentioned extrapolation method and have been able to more than double the number of series terms for moments of the pair-connectedness. Most of the series have been extended to order 112 for the square bond problem, 106 for the square site problem, 57 for the triangular bond problem and 56 for the triangular site problem. The series were analysed using differential approximants which can accommodate a wide variety of functional features and certainly should be appropriate in this case. The major result of the analysis is that the exact exponent values conjectured by Essam et al [4] generally seems to be incompatible with the numerical estimates from the differential approximant analysis.

The remainder of the article is organized as follows. In section 2 I will give further details of the models studied in this paper. Section 3 contains a description of the seriesexpansion technique with special emphasis on the transfer-matrix calculation (section 3.1) and the extrapolation procedure for the square bond case (section 3.3). Details of the extrapolation procedure for the remaining problems are given in the appendix. Details of the series analysis are given in section 4 and the results are discussed and summarized in section 5.

## 2. Specification of the models

Domany and Kinzel [8] demonstrated that site and bond percolation on the directed square lattice are special cases of a one-dimensional stochastic cellular automaton in which the preferred direction $t$ is time. DP is thus a model for a simple branching process in which a site $x$ occupied at time $t$ may give rise to zero or one offspring on each of the sites $x \pm 1$ at time $t+1$. Whether a site $(x, t)$ is occupied or not depends only on the state of its nearest neighbours in the row above. The evolution of the model on the square lattice is therefore governed by the conditional probabilities $P\left(\sigma_{x} \mid \sigma_{l}, \sigma_{r}\right)$, with $\sigma_{i}=1$ if site $i$ is occupied and 0 otherwise. These transition probabilities are the probabilities of finding the site $(x, t)$ in state $\sigma_{x}$ given that the sites $(x-1, t-1)$ and $(x+1, t-1)$ were in states $\sigma_{l}$ and $\sigma_{r}$, respectively. One has a very free hand in choosing the transition probabilities as long as one respects conservation of probability, $P\left(1 \mid \sigma_{l}, \sigma_{r}\right)=1-P\left(0 \mid \sigma_{l}, \sigma_{r}\right)$. In addition studies have generally been limited to cases in which the transition probabilities are independent
of both $x$ and $t$. In this paper I restrict my study to the following two cases corresponding to bond and site percolation:

$$
P\left(0 \mid \sigma_{l}, \sigma_{r}\right)= \begin{cases}(1-p)^{\sigma_{l}+\sigma_{r}} & \text { bond }  \tag{2.1}\\ (1-p)^{1-\left(1-\sigma_{l}\right)\left(1-\sigma_{r}\right)} & \text { site }\end{cases}
$$

On the triangular lattice the model is described by the probabilities $P\left(\sigma_{x} \mid \sigma_{l}, \sigma_{t}, \sigma_{r}\right)$ of finding the site $(x, t)$ in state $\sigma_{x}$ given that the sites $(x-1, t-1),(x, t-2)$, and $(x+1, t-1)$ were in states $\sigma_{l}, \sigma_{t}$ and $\sigma_{r}$, respectively, and I study the two cases

$$
P\left(0 \mid \sigma_{l}, \sigma_{t}, \sigma_{r}\right)= \begin{cases}(1-p)^{\sigma_{l}+\sigma_{t}+\sigma_{r}} & \text { bond }  \tag{2.2}\\ (1-p)^{1-\left(1-\sigma_{1}\right)\left(1-\sigma_{t}\right)\left(1-\sigma_{r}\right)} & \text { site. }\end{cases}
$$

The behaviour of the model is controlled by the branching probability $p$. When $p$ is smaller than a critical value $p_{c}$ the branching process eventually dies out and all space-time clusters remain finite. For $p>p_{c}$ there is a non-zero probability $P(p)$ that the branching process will survive indefinitely. This percolation probability is the order parameter of the process, and close to $p_{c}$ it vanishes as a power-law:

$$
\begin{equation*}
P(p) \propto\left(p-p_{c}\right)^{\beta} \quad p \rightarrow p_{c}^{+} \tag{2.3}
\end{equation*}
$$

In the low-density phase $\left(p<p_{c}\right)$ many quantities of interest can be derived from the pair-connectedness $C_{x, t}(p)$, which is the probability that the site $x$ is occupied at time $t$ given that the origin was occupied at $t=0$. The moments of the pair-connectedness may be written as

$$
\begin{equation*}
\mu_{n, m}(p)=\sum_{t=0}^{\infty} \sum_{x} x^{n} t^{m} C_{x, t}(p) \tag{2.4}
\end{equation*}
$$

Due to symmetry, moments involving odd powers of $x$ vanish. The remaining moments diverge as $p$ approaches the critical point from below:

$$
\begin{equation*}
\mu_{n, m}(p) \propto\left(p_{c}-p\right)^{-\left(\gamma+n v_{\perp}+m \nu_{\|}\right)} \quad p \rightarrow p_{c}^{-} \tag{2.5}
\end{equation*}
$$

One generally only studies the lower-order moments such as the mean cluster size $S(p)=$ $\mu_{0,0}(p)$, the first parallel moment $\mu_{0,1}(p)$, the second perpendicular moment $\mu_{2,0}(p)$, and the second parallel moment $\mu_{0,2}(p)$.

## 3. Series expansions

From (2.4) it follows that the first and second moments can be derived from the quantities

$$
\begin{equation*}
S(t)=\sum_{x} C_{x, t}(p) \quad \text { and } \quad X(t)=\sum_{x} x^{2} C_{x, t}(p) \tag{3.1}
\end{equation*}
$$

as
$S=\sum_{t=0}^{\infty} S(t) \quad \mu_{0,1}=\sum_{t=1}^{\infty} t S(t) \quad \mu_{0,2}=\sum_{t=1}^{\infty} t^{2} S(t) \quad \mu_{2,0}=\sum_{t=0}^{\infty} X(t)$.
$S(t)$ and $X(t)$ are polynomials in $p$ obtained by summing the pair-connectedness over all lattice sites whose parallel distance from the origin is $t$. As shown by Essam [9] the pair-connectedness can be expressed as a sum over all graphs formed by taking unions of directed paths connecting the origin to the site $(x, t)$,

$$
\begin{equation*}
C_{x, t}(p)=\sum_{g} d(g) p^{e} \tag{3.3}
\end{equation*}
$$

where $e$ is the number of random elements (bonds or sites) in the graph $g$. Any directed path to a site whose parallel distance from the origin is $t$ contains at least $m(t)$ steps with $m(t)=t$ for the square lattice and $m(t)=\lfloor(t+1) / 2\rfloor$ (integer division) for the triangular lattice. From this it follows that if $S(t)$ and $X(t)$ have been calculated for $t \leqslant t_{\max }$ then one can determine the moments to order $m\left(t_{\max }+1\right)-1$. One can, however, do much better, as demonstrated by Essam et al [4]. They used a non-nodal graph expansion, based on work by Bhatti and Essam [10], to extend the series to order $n\left(t_{\max }\right)$ approximately equal to $2 m\left(t_{\max }\right)$ (the actual order varies a little from problem to problem). Details of this expansion will be given below, but here it will suffice to note that it works by calculating the contributions $S^{N}(t)$ and $X^{N}(t)$ (correct to order $n(t)$ ) of non-nodal graphs to $S(t)$ and $X(t)$ and using the non-nodal expansions to calculate the final series for $S(p)$ and the various moments. Further extensions of the series can be obtained by using a procedure similar to that of Baxter and Guttmann [5]. One looks at correction terms to the series and tries to identify extrapolation formulae for the first $n_{r}$ correction terms allowing one to derive a further $n_{r}$ series terms correctly.

The series expansions for moments of the pair-connectedness is thus obtained as follows:
(i) Calculate the polynomials $S(t)$ and $X(t)$ for $t \leqslant t_{\max }$ using the transfer-matrix technique to an order greater than $n\left(t_{\text {max }}\right)+n_{r}$.
(ii) For each $t$ use the non-nodal graph expansion to calculate $S_{t}^{N}=\sum_{t^{\prime} \leqslant t} S^{N}\left(t^{\prime}\right)$ and $X_{t}^{N}=\sum_{t^{\prime} \leqslant t} X^{N}\left(t^{\prime}\right)$ correct to order $n(t)$.
(iii) From the sequences obtained from $S_{t}^{N}-S_{t+1}^{N}=-S^{N}(t+1)$ and $X_{t}^{N}-X_{t+1}^{N}=$ $-X^{N}(t+1)$ for $t<t_{\max }$ identify the first $n_{r}$ correction terms.
(iv) Use these correction terms to extend the series for $S^{N}$ and $X^{N}$ to order $n\left(t_{\max }\right)+n_{r}$.
(v) Finally calculate the series for $S, \mu_{0,1}, \mu_{0,2}$ and $\mu_{2,0}$ correct to order $n\left(t_{\max }\right)+n_{r}$.

Details of the transfer-matrix technique, non-nodal graph expansion and extrapolation procedure are given in the following sections.

### 3.1. Transfer-matrix technique

Figure 1 shows the part of the square and triangular lattices which can be reached from the origin O using no more than five steps. Note that, in keeping with the prescription used by Essam et al [4], vertical steps on the triangular lattice correspond to incrementing $t$ by two. The calculation of the pair-connectedness is readily turned into an efficient computer algorithm by use of the transfer-matrix technique. From (2.1) and (2.2) one sees that the evaluation of the pair-connectedness involves only local 'interactions' since the


Figure 1. Directed square and triangular lattices with orientation given by the arrows.
transition probabilities depend on neighbouring sites only. The probability of finding a given configuration can therefore be calculated by moving a boundary through the lattice one site at a time. At any given stage this line cuts through a number of, say $k$, lattice sites thus leading to a total of $2^{k}$ possible configurations along this line. Configurations along the boundary line are trivially represented as binary numbers, and the probability of each configuration is represented by a truncated polynomial in $p$.

Figure 1 shows how the boundary (marked by large filled circles) is moved in order to pick up the weight associated with a given 'face' of the lattice at a position $x$ along the boundary line. On the square lattice the boundary site at $\sigma_{r}$ is moved to $\sigma_{x}$ and the weight $P\left(\sigma_{x} \mid \sigma_{l}, \sigma_{r}\right)$ is picked up. Similarly on the triangular lattice the boundary site at $\sigma_{t}$ is moved to $\sigma_{x}$ while picking up the weight $P\left(\sigma_{x} \mid \sigma_{l}, \sigma_{t}, \sigma_{r}\right)$. In more detail, let $S 0=\left(\sigma_{1}, \ldots, \sigma_{x-1}, 0, \sigma_{x+1}, \ldots, \sigma_{k}\right)$ be the configuration of sites along the boundary with 0 at position $x$ and similarly $S 1=\left(\sigma_{1}, \ldots, \sigma_{x-1}, 1, \sigma_{x+1}, \ldots, \sigma_{k}\right)$ the configuration with 1 at position $x$. Then in moving the $x^{\prime}$ th site as just described the boundary line polynomials are updated as follows on the square lattice

$$
\begin{aligned}
& P(S 0)=W\left(0 \mid 0, \sigma_{l}\right) P(S 0)+W\left(0 \mid 1, \sigma_{l}\right) P(S 1) \\
& P(S 1)=W\left(1 \mid 0, \sigma_{l}\right) P(S 0)+W\left(1 \mid 1, \sigma_{l}\right) P(S 1)
\end{aligned}
$$

and as follows on the triangular lattice

$$
\begin{aligned}
& P(S 0)=W\left(0 \mid \sigma_{r}, 0, \sigma_{l}\right) P(S 0)+W\left(0 \mid \sigma_{r}, 1, \sigma_{l}\right) P(S 1) \\
& P(S 1)=W\left(1 \mid \sigma_{r}, 0, \sigma_{l}\right) P(S 0)+W\left(1 \mid \sigma_{r}, 1, \sigma_{l}\right) P(S 1)
\end{aligned}
$$

The pair-connectedness is calculated from the boundary polynomials before the boundary leaves the site by summing over all configurations with a 1 at that site. In practise the data was collected when the boundary reached a horizontal position on the square lattice and a position parallel to the right edge of the triangular lattice. The pairconnectedness is obviously symmetrical in $x, C_{x, t}(p)=C_{-x, t}(p)$, so it suffices to calculate the pair-connectedness for $x \geqslant 0$. More importantly, due to the directedness of the lattices, if one looks at sites ( $x, t$ ) with $x \geqslant 0$ they can never be reached by paths extending onto points $\left(x^{\prime}, t^{\prime}\right)$ in the part of the lattice for which $t^{\prime}>\lfloor t / 2\rfloor, x^{\prime}<-\lfloor t / 2\rfloor$. This effectively means that the pair-connectedness at points with parallel distance $t$ from the origin can be calculated using a boundary which cuts through at most $\lfloor t / 2\rfloor+1$ sites. Thus the memory (and time) required to derive $S(t)$ and $X(t)$ grows like $2^{\lfloor t / 2\rfloor+1}$.

For the bond and site problems on the square lattice I was able to calculate the pairconnectedness up to $t_{\max }=47$ and for the triangular lattice up to $t_{\max }=45$. Since the integer coefficients occurring in the series expansion become very large the calculation was performed using modular arithmetic [11]. Each run for $t_{\max }$, using a different prime number, took approximately 12 hours using 64 nodes on an Intel Paragon, and up to eight primes were needed to represent the coefficients correctly. The major limitation of the present calculation was available computer memory rather than time.

### 3.2. Non-nodal graph expansion

The non-nodal graph expansion has been described in detail in [4] and here I will only summarise the main points and introduce some notation. A graph $g$ is nodal if there is a point (other than the terminal point) through which all paths pass. It is clear that each such nodal point effectively works as a new origin for the cluster growth. This is the essential idea behind the non-nodal graph expansion. $S^{N}(t)$ is the contribution to $S(t)$ obtained by restricting the sum in (3.3) to non-nodal graphs. The non-nodal expansions are
obtained recursively from the polynomials $S(t)$ and $X(t)$. First one sets $S^{N}(1)=S(1)$ and $X^{N}(1)=X(1)$ and then for $2 \leqslant t \leqslant t_{\max }$ one calculates $S^{N}(t)$ and $X^{N}(t)$ from

$$
\begin{equation*}
S^{N}(t)=S(t)-\sum_{t^{\prime}=1}^{t-1} S^{N}\left(t^{\prime}\right) S\left(t-t^{\prime}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
X^{N}(t)=X(t)-\sum_{t^{\prime}=1}^{t-1}\left[S^{N}\left(t^{\prime}\right) X\left(t-t^{\prime}\right)+X^{N}\left(t^{\prime}\right) S\left(t-t^{\prime}\right)\right] \tag{3.5}
\end{equation*}
$$

Next form the sums of (3.2) using the truncated non-nodal polynomials $S^{N}(t)$ and $X^{N}(t)$ instead of $S(t)$ and $X(t)$. The final series are then obtained from the formulae

$$
\begin{align*}
& S=1 /\left(1-S^{N}\right)  \tag{3.6}\\
& \mu_{0,1}=\mu_{0,1}^{N} S^{2}  \tag{3.7}\\
& \mu_{0,2}=\left[\mu_{0,2}^{N}+2\left(\mu_{0,1}^{N}\right)^{2} S\right] S^{2}  \tag{3.8}\\
& \mu_{2,0}=\mu_{2,0}^{N} S^{2} . \tag{3.9}
\end{align*}
$$

### 3.3. Extrapolation procedure

When forming the sums (3.2) one could have stopped the summation at any $t$ prior to reaching $t_{\max }$ and used the formulae above to derive the series correct to order $n(t)$. Let $S_{t}^{N}$ and $X_{t}^{N}$ denote the non-nodal expansions obtained in this fashion. As observed by Baxter and Guttmann [5] one can often extend the series considerably by looking at correction terms to such series. The polynomials $S(t)$ and $X(t)$, and thus likewise the non-nodal expansions, will obviously contain terms of much higher order than that to which the final series is correct. One can therefore look at the difference between successive expansions, e.g.

$$
\begin{equation*}
S_{t}^{N}-S_{t+1}^{N}=-S^{N}(t+1)=p^{n(t+1)} \sum_{r \geqslant 0} s_{t, r} p^{r} \tag{3.10}
\end{equation*}
$$

which yields sequences of numbers $s_{t, r}$ with $t<t_{\text {max }}$. As observed in [5] the first sequence of numbers $s_{t, 0}$ is often quite simple and can readily be conjectured so that a closed form expression or a simple recurrence relation can be found. In the following I will give the details of how this is done in the square bond case. The treatment of the other problems are detailed in the appendix. Note, that if one can find the first $n_{r}$ correction terms one can use $S_{t_{\max }}^{N}=\sum_{m \geqslant 0} a_{N, m} p^{m}$ to extend the series $S^{N}=\sum_{m \geqslant 0} a_{m} p^{m}$ to order $n\left(t_{\max }\right)+n_{r}$, via

$$
\begin{equation*}
a_{n\left(t_{\max }\right)+1+k}=a_{N, n\left(t_{\max }\right)+1+k}-\sum_{m=0}^{\lfloor k / 2\rfloor} s_{t_{\max }+m, k-2 m} . \tag{3.11}
\end{equation*}
$$

So in order to find the correct series term $a_{n\left(t_{\text {max }}\right)+1+k}$ from the 'partial' term $a_{N, n\left(t_{\text {max }}\right)+1+k}$ one first subtracts $s_{t_{\text {max }}, k}$ which yields correctly the term $a_{N+1, n\left(t_{\max }+1\right)-1+k}$. One continues this process until arriving at $a_{N+\lfloor k / 2\rfloor+1, n\left(t_{\max }+\lfloor k / 2\rfloor+1\right)-q}$, where $q=1(0)$ if $k$ is even (odd), which is the correct term in the series for $S^{N}$.

In the square bond case the first sequence of correction terms start out as

$$
s_{t, 0}=1,2,5,14,42,132,429, \ldots
$$

which is immediately recognizable as the Catalan numbers $C_{t}=(2 t)!/(t!(t+1)!)$. These also occurred as the first correction term for the percolation probability series [5]. There is a very simple combinatorial proof for the first correction term. The first correction term arises
from the simplest (containing the minimum number of random elements) non-nodal graphs terminating at level $t+1$. These graphs are also the ones giving the first term of $S^{N}(t+1)$. It is obvious that these graphs are composed of two paths of length $t+1$ each, which meet at level $t+1$ but does not cross earlier. These graphs are in one-to-one correspondence with staircase polyominoes (or polygons) and it is well known that the latter are enumerated by the Catalan numbers $[12,13]$.

As was the case for the percolation probability series the higher-order correction terms can be expressed as rational functions of $s_{t, 0}$. For $S^{N}$ these extrapolation formulae are

$$
\begin{equation*}
s_{t, r}=\frac{2^{r}}{16\lfloor r / 2\rfloor!} \sum_{k=1}^{\lfloor r / 2\rfloor} b_{r, k}(2 t)^{k} C_{t-r+2}+\sum_{j=1}^{2 r} a_{r, j} C_{t-r+j} \quad t \geqslant r \tag{3.12}
\end{equation*}
$$

which are very similar to the formulae found in the percolation probability case [5]. The extrapolation formulae for $\mu_{0,1}^{N}$ and $\mu_{0,2}^{N}$ are simply $(t+1) s_{t, r}$ and $(t+1)^{2} s_{t, r}$, respectively.

The factor in front of the first sum has been chosen so as to make the leading coefficients particularly simple. I was able to find formulae for all correction terms up to $r=16$. The coefficients in the extrapolation formulae are listed in table 1.

From (3.12) it is clear that the $t_{\text {max }}-r$ terms available in the sequences for the correction terms are not sufficient to determine all the $2 r+\lfloor r / 2\rfloor$ unknown coefficients of the extrapolation formulae for large $r$. However, from table 1 one immediately sees that the leading coefficients $a_{r, 2 r}$ and $b_{r,\lfloor r / 2\rfloor}$ in the extrapolation formulae are very simple In particular one has, $(-1)^{r} a_{r, 2 r}=2$, and

$$
b_{r,\lfloor r / 2\rfloor}= \begin{cases}(-1)^{\lfloor r / 2\rfloor}(r-9) & r \text { odd } \\ (-1)^{\lfloor r / 2\rfloor} & r \text { even. }\end{cases}
$$

Likewise, $a_{r, 1}$ is zero for $r>2$. In general I find that the leading coefficients $a_{r, 2 r-m}$ are expressible as polynomials in $r$ of order $m$ :
$(-1)^{r} a_{r, 2 r-m}= \begin{cases}-4 r & r>0, m=1 \\ 4 r^{2}-10 & r>2, m=2 \\ -8 r^{3} / 3+80 r / 3-40 & r>4, m=3 \\ 4 r^{4} / 3-100 r^{2} / 3+86 r-48 & r>6, m=4 \\ -8 r^{5} / 15+80 r^{3} / 3-92 r^{2}-62 r / 15+350 & r>8, m=5 .\end{cases}$
So when calculating the coefficients listed in table 1 I first used the sequences for the correction terms to predict as many of the extrapolation formulae (3.12) as possible. Then I predicted as many of the leading coefficients as possible. This in turn allowed me to find more extrapolation formulae, which I used to find more of the formulae for the leading coefficients $a_{r, 2 r-m}$. I repeated this until the process stopped with the extrapolation formulae listed in table 1.

For $X^{N}$ the sequence determining the first correction formula starts out as

$$
x_{t, 0}=0,2,8,30,112,420,1584,6006,22880, \ldots
$$

from which one sees that $x_{t, 0}=2(t-1) C_{t-1}$. The proof of this formula is a little more involved. First one needs the number of configurations, $w(t, x)$, of two non-crossing paths terminating at $(x, t)$. Essam and Guttmann [14] gives a formula for the number of noncrossing watermelon configurations with $p$ chains which join $s$ steps and at height $q$ from the origin

$$
w_{s}(0)=1 \quad w_{s}(s-q)=w_{s}(q)
$$

Table 1. The coefficients $a_{r, j}$ and $b_{r, k}$ in the extrapolation formulae for $S^{N}$ in the square bond problem

and

$$
\begin{equation*}
w_{s}(q)=\prod_{i=1}^{q} \frac{(p+i)_{s-2 i+1}}{(i)_{s-2 i+1}} \quad 1 \leqslant q \leqslant\lfloor s / 2\rfloor \tag{3.13}
\end{equation*}
$$

where $(a)_{k}=a(a+1)(a+2) \cdots(a+k-1)$, is Pochhammer's symbol. A watermelon configuration with two chains is in one-to-one correspondence with the configuration obtained from the two non-crossing paths by deleting the two bonds connected to the origin and the two bonds connected to the terminal point, so that $w(t, x)=w_{t-2}(x)$. In the case $p=2$ (3.13) reduces to a simple product of binomial coefficients,

$$
\begin{align*}
w_{s}(q) & =\prod_{i=1}^{q} \frac{(s-i+2)(s-i+1)}{i(i+1)}=\frac{s!(s+1)!}{(s-q)!q!(s+1-q)!(q+1)!} \\
& =\frac{1}{s+2}\binom{s}{q}\binom{s+2}{q+1} \tag{3.14}
\end{align*}
$$

The correction term $s_{t, 0}$ can easily be derived from (3.14) as (remembering that $s_{t, 0}$ arises from paths terminating at level $t+1$ )

$$
\begin{aligned}
s_{t, 0} & =\sum_{q=0}^{t-1} w_{t-1}(q)=\frac{1}{t+1} \sum_{q=0}^{t-1}\binom{t-1}{q}\binom{t+1}{q+1} \\
& =\frac{1}{t+1} \sum_{q=0}^{t}\binom{t-1}{q}\binom{t+1}{t-q}=\frac{1}{t+1}\binom{2 t}{t}=C_{t} .
\end{aligned}
$$

In this derivation I have used only standard properties of binomial coefficients, the main one being the formula

$$
\begin{equation*}
\sum_{q=0}^{p}\binom{m}{q}\binom{n}{p-q}=\binom{m+n}{p} \tag{3.15}
\end{equation*}
$$

After this little diversion I return to the calculation of $x_{t, 0}$. From (3.1) and the measurement of $x$ with respect to the centre line it is clear that

$$
\begin{equation*}
x_{t, 0}=\sum_{q=0}^{s}(s-2 q)^{2} w_{s}(q) \tag{3.16}
\end{equation*}
$$

where $s=t-1$. By simple expansion of the square and insertion of $w_{s}(q)$ one finds

$$
\begin{aligned}
x_{t, 0}=\frac{1}{s+2} & {\left[s^{2} \sum_{q=0}^{s+1}\binom{s}{q}\binom{s+2}{q+1}-4 s \sum_{q=0}^{s+1} q\binom{s}{q}\binom{s+2}{q+1}\right.} \\
& \left.+4 \sum_{q=0}^{s+1} q(q+1)\binom{s}{q}\binom{s+2}{q+1}-4 \sum_{q=0}^{s+1} q\binom{s}{q}\binom{s+2}{q+1}\right] \\
= & \frac{1}{s+2}\left[s^{2}\binom{2 s+2}{s+1}-4 s^{2}\binom{2 s+1}{s+1}-4 s(s+2)\binom{2 s}{s}-4 s\binom{2 s+1}{s+1}\right] \\
= & \frac{1}{s+2}\left[-\frac{2 s^{2}(2 s+1)}{s+1}\binom{2 s}{s}+4 s(s+2)\binom{2 s}{s}-\frac{4 s(2 s+1)}{s+1}\binom{2 s}{s}\right] \\
= & \frac{1}{(s+2)(s+1)}\binom{2 s}{s}\left[2 s^{2}+4 s\right]=\frac{2 s}{(s+1)}\binom{2 s}{s} \\
= & 2 s C_{s}=2(t-1) C_{t-1} .
\end{aligned}
$$

The major step was the use of (3.15) to get rid of the sum over $q$. For the rest of the calculations I only used the definition and well known properties of the binomial coefficients.

In this case I find that the general extrapolation formulae can be written as

$$
\begin{equation*}
x_{t, r}=\frac{2^{r}}{16\lfloor r / 2\rfloor!} \sum_{k=1}^{\lfloor r / 2\rfloor+1} b_{r, k}(2 t)^{k} C_{t-r+2}+\sum_{j=0}^{2 r} a_{r, j} C_{t-r+j} \quad t \geqslant r . \tag{3.17}
\end{equation*}
$$

The coefficients are not reproduced here due to the excessive length of this material, but are available from the author (please see end of article for details). Again I found that the leading coefficients are very simple, so a procedure similar to that used to find more extrapolation formulae for $S^{N}$ was applied for $X^{N}$ also. Though in this case it is slightly more complicated because different polynomials are found for $a_{r, 2 r-m}$ depending on whether $r$ is odd or even. I was able to find the extrapolation formulae for $r \leqslant 15$.

From the polynomials for $S^{N}\left(t_{\max }\right)$ and $X^{N}\left(t_{\max }\right)$, using the extrapolation formulae given above, I extended the series for $S(p), \mu_{0,1}(p)$ and $\mu_{0,2}(p)$ to order 112 and the series for $\mu_{2,0}(p)$ to order 111. The new series terms are listed in table 2 , while the terms for $n \leqslant 49$ can be found in [4]. The full series are available from the author via e-mail or can be retrieved from the authors homepage on the world wide web (see later for details).

For the square site problem I have identified the first 12 extrapolation formulae for $S^{N}$ and the first nine for $X^{N}$. This allowed me to derive the series correctly to order 106 and 103 , respectively. For the triangular bond and site cases the first $10-12$ extrapolation formulae were found and the series calculated to orders 55-57 depending on the particular problem. Details of the extrapolation formulae and lists of the new series coefficients can be found in the appendix. The full series and tables of the coefficients in the extrapolation formulae can be obtained from the author.

## 4. Analysis of the series

In the vicinity of the critical point one expects the moments of the pair-connectedness to have the functional form

$$
\begin{equation*}
f(p) \propto A\left(p_{c}-p\right)^{\lambda}\left[1+a_{1}\left(p_{c}-p\right)^{\Delta_{1}}+b_{1}\left(p_{c}-p\right) \ldots\right] \tag{4.1}
\end{equation*}
$$

where $\lambda$ is the critical exponent, $\Delta_{1}$ the leading confluent exponent and the $\ldots$ represents higher-order correction terms. By universality we expect $\lambda$ to be the same for all the percolation problems. In addition to the physical singularity, the series may have nonphysical singularities for other values (real or complex) of $p$.

The series for moments of the pair-connectedness were analysed using inhomogeneous first- and second-order differential approximants. A comprehensive review of these and other techniques for series analysis may be found in [2]. Here it suffices to say that a $K$ th-order differential approximant to a function $f$ is formed by matching the earliest series coefficients to an inhomogeneous differential equation of the form (see [2] for details)

$$
\begin{equation*}
\sum_{i=0}^{K} Q_{i}(x)\left(x \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{i} f(x)=P(x) \tag{4.2}
\end{equation*}
$$

where $Q_{i}$ and $P$ are polynomials of order $N_{i}$ and $L$, respectively. First- and second-order approximants are denoted by $\left[L / N_{0} ; N_{1}\right]$ and $\left[L / N_{0} ; N_{1} ; N_{2}\right]$, respectively.
Table 2. New series terms for the directed square lattice bond problem

| $n$ | $S(p)$ | $\mu_{0,1}(p)$ | $\mu_{0,2}(p)$ | $\mu_{2,0}(p)$ |
| :---: | :---: | :---: | :---: | :---: |
| 50 | -48816119038 | 11801670105578 | 1619393474185766 | 27794063081342 |
| 51 | 507516102724 | 33055165149064 | 3063931985169024 | 54920977045280 |
| 52 | -288652716240 | 27869200356228 | 4530325110201816 | 73258860229496 |
| 53 | 1605880660392 | 96170461301080 | 8892704619221536 | 154245664038528 |
| 54 | -1407950918758 | 58847785748014 | 12476033918538246 | 189153100033446 |
| 55 | 5398489609494 | 288365269158218 | 25899537405464346 | 436835649689930 |
| 56 | -6021475295246 | 97008272891722 | 33711579420868182 | 474309443770870 |
| 57 | 17915929204078 | 876853221827434 | 75639045971965390 | 1248873201075582 |
| 58 | -23161 191351438 | 50270991328638 | 89157533500835018 | 1142258426763018 |
| 59 | 61169203195260 | 2742424862540904 | 222615251058740148 | 362093554078700 |
| 60 | -91439492617463 | -723012645772984 | 226410239178311060 | 2540682041470492 |
| 61 | 218285935121478 | 8945610206297122 | 665257166510500110 | 10729171422690574 |
| 62 | -347041940934654 | -5091 807702556172 | 541873450068575656 | 4813181710705328 |
| 63 | 75582536721926 | 29441230893756258 | 2010803687079582486 | 32414565156737718 |
| 64 | -1261522730127947 | -24604605804865 004 | 1176137623037120136 | 5583933472771488 |
| 65 | 2689697586459424 | 100083593993221016 | 6208781157063955092 | 100528453740276036 |
| 66 | -4794978 299078876 | -111027801572997440 | 1897872187352474044 | -13398245 182310812 |
| 67 | 9873705455451962 | 353256305942487862 | 19749039440486959110 | 322040908558415270 |
| 68 | -17606769359805002 | -459 124803459589112 | 105921802167944744 | -141155953736298432 |
| 69 | 34685584933271312 | 1234649044784083520 | 63823159209011263356 | 1053196692821964284 |
| 70 | -63346329725838982 | -1803990875049717410 | -18787876064221921686 | -760886807616650166 |
| 71 | 126576386179363762 | 4457869599502824958 | 213199421030557203290 | 3546162218978100650 |
| 72 | -238791893310090455 | -7204198205577806878 | -130294082472485 176236 | -3521825272581984064 |
| 73 | 467217890189754678 | 16419837227409088034 | 735449584170612356710 | 12284194787984123846 |
| 74 | -865 360273580474576 | -27618071407049 240332 | -648894890087745222380 | -14870112157423507452 |
| 75 | 1655020489419904522 | 59215007852286252798 | 2558081110403875257118 | 42945484977991237294 |
| 76 | -3119681720859651798 | -104269518320642632 294 | -2872616792616 193864740 | -59746354645402475464 |
| 77 | 6112229358703831342 | 220308940252364053854 | 9196867775386117146210 | 153618586695190985346 |
| 78 | -11754183721345954258 | -404350946017058554676 | -12360072007022536761656 | -237460263100 122622008 |
| 79 | 22597239603197843510 | 825284068524839748354 | 33739282207965719236902 | 558339048175747451206 |
| 80 | -42254381215339002849 | -1512209154805053886454 | -50141941500909233943898 | -917262309953119861762 |
| 81 | 80119633205161441704 | 3008597412927623407944 | 123045017109279192315256 | 2023409847652367652792 |
| 82 | -153436526269872506166 | -5661354126139476495002 | -199404059032602758054790 | -3497872081717444367406 |
| 83 | 299742770352697886058 | 11376987638602404205186 | 462621148772929893023982 | 7468540111543307136334 |
| 84 | -578005275119339317137 | -21748117195128953695678 | -799093581590590 191030632 | -13423468537971564505 180 |
| 85 | 1100376713100175425834 | 42666489134233272441382 | 1745525522573249273895934 | 27702351077321825033806 |
| 86 | -2066519690614778360502 | -80452042465425 106274566 | -3091636958239698242569606 | -50534526731865521375910 |
| 87 | 3925426563659158745246 | 156482448914584874236898 | 6508930727244009005368374 | 101918197947493977841846 |
| 88 | -7570287289675980312099 | -301476120742919711572632 | -11977317344882408349739708 | -190086876471603772883468 |
| 89 | 14770206114483585630780 | 595928021892468292003228 | 24964572420431393417069916 | 381418739444284933316252 |
| 90 | -28497105408805663534168 | -1153611368793245492912948 | -46972868730035864908413600 | -721567973001941669604264 |
| 91 | 54009873057404488263124 | 2230172227389674189568676 | 95014521823798847778682224 | 1423864146941093990943952 |
| 92 | -101365 149804767013432178 | -4238623392738344821 239874 | -178540440608962610328762650 | -2690665938166916889 494170 |
| 93 | 193074470702855611598800 | 8194551426018374360988480 | 357068364097506426338276644 | 5267639463907912905453732 |
| 94 | -375465 307728947308049038 | -15966490078269042 239928778 | -687579693042527922973062762 | -10093017091775 195821161034 |
| 95 | 733587080957649030952780 | 31419252633404837133144864 | 1382496577727085057659832724 | 19846440181751841888348276 |
| 96 | -1407768320341892431455597 | -60854835 125808366150603264 | -2671473287753792887166131898 | -38 165367702608542662852262 |
| 97 | 2652453424628111858120636 | 116710563412971455236833084 | 5252303428933538484371763852 | 74090674609046304004729820 |
| 98 | -4994997189815654309285716 | -222700 149867630979856555884 | -10070 886824842706773951858088 | -141 654537468965192312439616 |
| 99 | 9582116900498277108211678 | 431233968917196829158559222 | 19830249071310192476250960630 | 274936632555726697937295702 |
| 100 | -18695928027022491233374283 | -844128796374222622704429022 | -38800460642 107452115957062464 | -532 127310827238890555549348 |
| 101 | 36447747150709546344466562 | 1656288019513322011385494706 | 77005465410557975976009279278 | 1039178034809963112448701838 |
| 102 | -69751142361738816206100980 | -3203512282371391967581738048 | -149882328321413389925795707828 | -2007176273662763046778255692 |
| 103 | 131093981974714374047295196 | 6119858028807821975019141708 | 291426808439994369970860912820 | 3872225062856423137844592132 |
| 104 | -246912382538210356128227719 | -11686384832378651095002246250 | -562231983817634749999483821520 | -7431921350302739474421979228 |
| 105 | 476269621022570452892936354 | 22695145396282470359093537754 | 1102918492775428103319535730226 | 14398589108038667956855208338 |
| 106 | -93592019593491769435721118 | -44650872404026806263517170226 | -2173673482315575515684047562710 | -27996025755985946126762 221566 |
| 107 | 1822666367955366954226762322 | 87475964091663148670303074082 | 4292233544563601832800911011570 | 54550461477489119415528104754 |
| 108 | -3457328237704527379069614957 | -168248261202406774396896258028 | -8344957626439769709 378845906902 | -105346747 734498192654664703386 |
| 109 | 6468620061451349324632525978 | 320141983848608665933961797186 | 16131167712769833203421125262258 | 202541716970409485480895800850 |
| 110 | -12274653298845 615056223573114 | -613827 858236772855763836272346 | -31237041224868511036559013283630 | $-389508487345526842037950714262$ |
| 111 | 23895824638927458824334426734 | 1198741273733824166575265793142 | 61365773705437232962411451241006 | 755678002297838255419395153550 |
| 112 | -46949709528735587230164873730 | -2360701178771867028398496651684 | -121215418908857920604650167026140 |  |

### 4.1. The square bond series

In this section I will give a detailed account of the analysis of the square bond series which leads to the most accurate estimates. The analysis of the series for the other problems are described summarily in the following sections. In addition to the moment series I have also analysed the series $\mu_{0,2}(p) / \mu_{0,1}(p) \sim\left(p_{c}-p\right)^{-\nu_{\|}}$and the series $\mu_{2,0}(p) \mu_{0,2}(p) /\left(\mu_{0,1}(p)\right)^{2} \sim\left(p_{c}-p\right)^{-2 \nu_{\perp}}$.

In order to locate the singularities of the series in a systematic fashion I used the following procedure: I calculate all $[L / N ; M]$ and $[L / N ; M ; M]$ first- and second-order inhomogeneous differential approximants with $|N-M| \leqslant 1$ and $L \leqslant 35$, which use more than 95 or 90 terms, respectively. Each approximant yields $M$ possible singularities and associated exponents from the $M$ zeroes of $Q_{1}$ or $Q_{2}$, respectively (many of these are of course not actual singularities of the series but merely spurious zeros.) Next these zeroes are sorted into equivalence classes by the criterion that they lie at most a distance $2^{-k}$ apart. An equivalence class is accepted as a singularity if it contains more than $N_{c}$ approximants, and an estimate for the singularity and exponent is obtained by averaging over the approximants (the spread among the approximants is also calculated). I used $N_{c}=20$ (15) for first-order (second-order) approximants, which means that at least two-thirds to three-quarters of all approximants had to be included before an equivalence class was accepted. The calculation was then repeated for $k-1, k-2, \ldots$ until a minimal value of 8 or so was reached. To avoid outputting well-converged singularities at every level, once an equivalence class has been accepted, the approximants which are members of it are removed, and the subsequent analysis is carried out on the remaining data only. One advantage of this method is that spurious outliers, a few of which will almost always be present when so many approximants are generated, are discarded systematically and automatically.

In table 3 I have listed the estimates for the physical critical point $p_{c}$ and the associated exponents obtained from the six series that I studied. The errors listed in the parentheses are calculated from the spread among the approximants and equals one standard deviation. Note that these error estimates should not be seen as accurately representing the true errors. $N_{a}$ is the number of approximants included in the estimates.

Generally the estimates for various orders $L$ of the inhomogeneous polynomial are exceptionally well converged and excellent agreement is observed both between the various estimates for each series as well as between the $p_{c}$-estimates from the different series. Apart from the first-order approximants for small $L$ to $\mu_{2,0}(p) \mu_{0,2}(p) /\left(\mu_{0,1}(p)\right)^{2}$ all estimates for $p_{c}$ are consistent with the highly accurate value $p_{c}=0.64470015(15)$. This slight discrepancy is not important since one generally would expect large $L$ firstorder approximants and second-order approximants to yield more reliable estimates. These approximants are better at dealing with analytic background terms or other features which might possibly slow down the convergence of the estimates to the true critical values. Further note that $N_{a}$ generally is well above the cut-off $N_{c}$ showing that in most cases only a few approximants are discarded. The uncertainty in the last digits of the $p_{c}$-estimate, given in parentheses, is probably on the conservative side, and is mostly due to the tendency of $\mu_{0,1}$ and $\mu_{0,2}$ to favour a somewhat lower estimate for the critical point.

Before proceeding I will consider possible sources of systematic errors. First and foremost the possibility that the estimates might display a systematic drift as the number of terms used is increased and secondly the possibility of numerical errors. The latter possibility is quickly dismissed. The calculations were performed using 128-bit real numbers (REAL*16 on an IBM RISC work station). The estimates from a few approximants were compared to values obtained using MAPLE with up to 100 digits accuracy and this clearly

Table 3. Estimates of $p_{c}$ and critical exponents for the square bond problem.

| $L$ | First-order DA |  |  | Second-order DA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $p_{c}$ | $\gamma$ | $N_{a}$ | $p_{c}$ | $\gamma$ | $N_{a}$ |
| 0 | $0.64470051(60)$ | $2.27832(77)$ | 25 | $0.644700181(37)$ | 2.277716 (30) | 22 |
| 5 | $0.64470018(72)$ | $2.27807(71)$ | 25 | $0.644700169(26)$ | $2.277708(23)$ | 18 |
| 10 | $0.64470004(13)$ | 2.277 602(93) | 26 | $0.644700158(41)$ | $2.277703(34)$ | 23 |
| 15 | $0.644700136(29)$ | 2.277 665(56) | 23 | $0.644700146(29)$ | $2.77690(23)$ | 20 |
| 20 | $0.644700102(21)$ | 2.277 649(21) | 24 | $0.644700146(17)$ | 2.277 689(14) | 18 |
| 25 | $0.644700097(49)$ | 2.277 646(42) | 23 | $0.644700149(20)$ | 2.277 693(15) | 21 |
| 30 | $0.644700108(29)$ | 2.277 659(24) | 26 | $0.644700162(12)$ | $2.277704(11)$ | 16 |
| 35 | $0.644700129(21)$ | 2.277 678(15) | 21 | $0.64470029(22)$ | 2.277 92(42) | 22 |
| $L$ | $p_{c}$ | $\nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\nu_{\\|}$ | $N_{a}$ |
| 0 | $0.644700153(12)$ | $1.7338184(50)$ | 22 | $0.644700169(97)$ | $1.733845(45)$ | 19 |
| 5 | $0.644700154(31)$ | $1.733818(12)$ | 27 | $0.644700178(50)$ | 1.733 846(28) | 16 |
| 10 | $0.644700115(11)$ | 1.7338071 (35) | 22 | $0.6447001718(88)$ | $1.7338362(42)$ | 20 |
| 15 | $0.644700142(33)$ | $1.733819(21)$ | 22 | $0.644700136(50)$ | $1.733813(34)$ | 18 |
| 20 | $0.644700162(14)$ | 1.7338319 (78) | 25 | $0.644700154(23)$ | $1.733827(11)$ | 19 |
| 25 | $0.644700149(24)$ | $1.733824(11)$ | 25 | $0.644700142(13)$ | $1.7338213(67)$ | 18 |
| 30 | $0.6447001557(63)$ | $1.7338279(31)$ | 23 | $0.644700122(34)$ | 1.733 806(25) | 21 |
| 35 | $0.6447001503(61)$ | $1.7338254(32)$ | 22 | $0.644700164(20)$ | $1.7338312(92)$ | 20 |
| $L$ | $p_{c}$ | $2 \nu_{\perp}$ | $N_{a}$ | $p_{c}$ | $2 v_{\perp}$ | $N_{a}$ |
| 0 | 0.64470040 (13) | $2.193828(55)$ | 22 | $0.644700196(17)$ | 2.193 711(11) | 17 |
| 5 | $0.644700438(94)$ | 2.193 843(36) | 22 | $0.644700192(18)$ | $2.193708(10)$ | 18 |
| 10 | $0.64470041(17)$ | 2.193 826(95) | 22 | $0.644700174(47)$ | $2.193703(29)$ | 17 |
| 15 | $0.644700147(17)$ | $2.1936852(79)$ | 22 | $0.644700163(23)$ | $2.193693(12)$ | 18 |
| 20 | $0.644700201(17)$ | 2.1937126 (82) | 23 | $0.644700217(40)$ | $2.193722(22)$ | 16 |
| 25 | 0.644700 200(10) | $2.1937132(54)$ | 23 | $0.644700192(28)$ | $2.193708(13)$ | 16 |
| 30 | $0.644700196(10)$ | $2.1937107(51)$ | 23 | $0.644700183(12)$ | $2.1937039(64)$ | 17 |
| 35 | $0.644700195(14)$ | 2.1937110 (69) | 23 | $0.644700182(15)$ | 2.1937031 (84) | 18 |
| $L$ | $p_{c}$ | $\gamma+\nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\gamma+\nu_{\\|}$ | $N_{a}$ |
| 0 | $0.644700091(76)$ | 4.011423 (76) | 24 | $0.644700091(32)$ | 4.011434 (35) | 18 |
| 5 | $0.644700042(74)$ | $4.011375(65)$ | 25 | $0.644700095(20)$ | 4.011440 (23) | 18 |
| 10 | $0.644700023(97)$ | 4.011361 (79) | 25 | $0.644700079(37)$ | $4.011413(44)$ | 20 |
| 15 | $0.644700071(72)$ | $4.011403(73)$ | 24 | $0.644700105(47)$ | $4.011455(50)$ | 20 |
| 20 | $0.644700015(66)$ | $4.011350(57)$ | 26 | $0.644700096(32)$ | $4.011443(34)$ | 18 |
| 25 | $0.64470004(15)$ | $4.01139(15)$ | 21 | $0.644700096(63)$ | 4.011440 (73) | 19 |
| 30 | $0.644700037(68)$ | $4.011370(59)$ | 24 | $0.644700101(21)$ | $4.011448(22)$ | 19 |
| 35 | $0.644700038(54)$ | $4.011369(49)$ | 23 | $0.644700090(20)$ | $4.011438(22)$ | 18 |
| $L$ | $p_{c}$ | $\gamma+2 \nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\gamma+2 \nu_{\\|}$ | $N_{a}$ |
| 0 | $0.644700043(87)$ | $5.74515(10)$ | 24 | $0.644700079(19)$ | 5.745 208(29) | 18 |
| 5 | $0.644700079(96)$ | 5.745 20(13) | 24 | $0.644700084(25)$ | 5.745 224(35) | 16 |
| 10 | $0.64470005(11)$ | $5.74517(13)$ | 21 | $0.644700075(29)$ | 5.745 208(37) | 17 |
| 15 | $0.64470011(10)$ | $5.74525(17)$ | 22 | $0.644700075(17)$ | $5.745213(25)$ | 22 |
| 20 | $0.644700051(27)$ | 5.745 156(34) | 24 | $0.644700087(38)$ | 5.745 232(51) | 17 |
| 25 | $0.64470013(17)$ | 5.745 31(32) | 25 | $0.644700082(22)$ | 5.745 225(32) | 18 |
| 30 | $0.644700068(45)$ | $5.745180(57)$ | 21 | $0.644700082(25)$ | 5.745 231(50) | 18 |
| 35 | 0.644699 99(10) | $5.74510(11)$ | 25 | $0.644700091(45)$ | 5.745 231(75) | 19 |

Table 3. (Continued)

|  | First-order DA |  |  | Second-order DA |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $L$ | $p_{c}$ | $\gamma+2 v_{\perp}$ | $N_{a}$ |  | $p_{c}$ | $\gamma+2 \nu_{\perp}$ | $N_{a}$ |
| 0 | $0.6447000819(37)$ | $4.4712988(18)$ | 22 |  | $0.644700119(52)$ | $4.471341(57)$ | 20 |
| 5 | $0.6447000806(26)$ | $4.4712981(13)$ | 23 |  | $0.644700117(21)$ | $4.471329(20)$ | 17 |
| 10 | $0.6447000857(78)$ | $4.4713017(62)$ | 24 |  | $0.644700115(46)$ | $4.471332(46)$ | 16 |
| 15 | $0.644700138(69)$ | $4.47136(10)$ | 21 |  | $0.644700094(68)$ | $4.471319(50)$ | 16 |
| 20 | $0.644700101(24)$ | $4.471315(21)$ | 23 |  | $0.644700132(40)$ | $4.471351(42)$ | 16 |
| 25 | $0.644700101(29)$ | $4.471316(25)$ | 25 |  | $0.644700101(16)$ | $4.471314(14)$ | 16 |
| 30 | $0.644700112(21)$ | $4.471324(19)$ | 21 |  | $0.644700121(42)$ | $4.471340(46)$ | 19 |
| 35 | $0.644700119(17)$ | $4.471330(16)$ | 21 |  | $0.644700114(41)$ | $4.471334(44)$ | 18 |



Figure 2. The deviation in the last two digits, $10^{8} \Delta p_{c}$, from the central estimate of the critical point $p_{c}=0.64470015$, of the estimates for the critical point by second-order differential approximants. Shown is (from left to right and top to bottom) estimates from the series $S(p)$, $\mu_{0,2}(p) / \mu_{0,1}(p), \mu_{2,0}(p) \mu_{0,2}(p) /\left(\mu_{0,1}(p)\right)^{2}, \mu_{0,1}(p), \mu_{0,2}(p)$, and $\mu_{2,0}(p)$.
showed that the program was numerically stable and rounding errors were negligible. In order to address the possibility of systematic drift and lack of convergence to the true critical values I refer to figure 2 . In this figure $I$ have plotted the deviation in the last two digits, $10^{8} \Delta p_{c}$, from the critical point $p_{c}=0.64470015$. Included in the figure are estimates from inhomogeneous second-order differential approximants with $L \leqslant 35$ to the six series that I have studied. From this figure it is evident that the series estimates displayed on the top row are well converged once the number of terms exceeds 90 or so, while the series on the bottom row still show evidence of a systematic drift and the estimates have not yet converged to their asymptotic value. This is particularly manifest for the series $\mu_{0,1}$ and $\mu_{0,2}$ shown in the bottom left and central panels. Since these series were the ones responsible for most of the error on the estimate for $p_{c}$, and given the very good convergence of the estimates from the series shown in the top row, it does not seem overly optimistic to adopt
the tighter estimate $p_{c}=0.64770015(5)$. Clearly the large majority of estimates for the first three series lie well within this error-bound as the number of terms increase and likewise the estimates from the remaining series clearly seem to converge towards this value.

Next I turn my attention to the estimates for the critical exponents. Very precise estimates for $\gamma, v_{\|}$, and $2 \nu_{\perp}$ can be obtained by examining table 3 . I have used a slightly more systematic and enlightening procedure. Close to the critical point there is an apparent linear dependence of the estimates for critical exponents on the estimates for $p_{c}$. One can use this to obtain improved estimates for the exponents by performing a linear fit of the exponent estimates as a function of $\Delta p_{c}$ (the distance from the critical point). The result of such linear fits is listed below. In these fits I used the same set of approximants as those on which the estimates in the tables above were based. But I discarded any approximant for which $\left|\Delta p_{c}\right|=\left|p_{c}-0.64470015\right|>0.00000015$. The error on the 'pure' exponent part of the estimates mainly reflects the slight difference between the first- and second-order approximants (the errors as listed are approximately twice this difference). In the estimates for $\gamma$ and $\gamma+2 v_{\perp}$ I used only the first-order approximants with $L \geqslant 15$.

$$
\begin{align*}
& \gamma=2.277690(10) \pm 750 \Delta p_{c} \\
& v_{\|}=1.733824(3) \pm 500 \Delta p_{c} \\
& 2 v_{\perp}=2.193687(2) \pm 500 \Delta p_{c} \\
& \gamma+v_{\|}=4.011495(15) \pm 1150 \Delta p_{c}  \tag{4.3}\\
& \gamma+2 v_{\|}=5.745308(15) \pm 1400 \Delta p_{c} \\
& \gamma+2 v_{\perp}=4.471368(3) \pm 1000 \Delta p_{c}
\end{align*}
$$

As can be seen the exponent estimates are very precise. Even with the very small error in the $p_{c}$-estimate, this is still the major source of error (by an order of magnitude) in the exponent estimates. As previously noted [6], there is no simple rational fraction whose decimal expansion agrees with the estimate of $\beta$ obtained from the percolation-probability series. The same is true for the estimates of $\nu_{\|}$and $2 \nu_{\perp}$ listed above. In particular note that the rational fraction suggested by Essam et al $[4], \nu_{\|}=26 / 15=1.733333 \ldots$, and $2 v_{\perp}=79 / 36=2.19444 \ldots$, is incompatible with the estimates. The rational fraction suggested for $\gamma=41 / 18=2.277777 \ldots$ lies within the error bounds for the exponent estimate if the error on $p_{c}$ exceeds $10^{-7}$. So the more conservative error estimate listed earlier would just include the suggested value of $\gamma$. However, most of the estimates in table 3 clearly exclude the exact fraction as does the more narrow error estimate on $p_{c}$. Finally I note that the better converged estimates for $\gamma+2 v_{\perp}$ and $2 v_{\perp}$ yields the estimate $\gamma=2.277681(5)$, which, within the error, agrees with the direct estimate but points to a possibly slightly lower value of $\gamma$.

The estimate for $p_{c}$ advocated above lies within the error-bounds of that obtained from the percolation probability series [6] $p_{c}=0.6447006(10)$, though a lower central value is favoured by the series analysed in this paper. From the scaling relation $\beta=\left(v_{\|}+v_{\perp}-\gamma\right) / 2 \mathrm{I}$ obtain the estimate $\beta=0.276489(7) \pm 750 \Delta p_{c}$, which is consistent with the direct estimate $\beta=0.27643(10)$. It is quite likely that the minor discrepancies between the central values would disappear if the percolation probability series could be extended from the 55 terms in [6] to an order comparable to the series analysed here. Evidence to this effect is provided by the biased estimate $\beta=0.276483(14)$ calculated at $p_{c}=0.64470015$ using Dlog Padé approximants utilizing at least 45 terms of the percolation-probability series.

I also analysed the series in order to estimate the leading confluent exponents $\Delta_{1}$. As was the case for the percolation-probability series both the Baker-Hunter transformation and the method of Adler, Moshe and Privman (see [6] and references therein for details
regarding these methods) yielded estimates consistent with $\Delta_{1}=1$. So there are no signs of non-analytic corrections to scaling.

Finally I looked for non-physical singularities of the series. The series have a singularity on the negative axis closer to the origin than $p_{c}$. This singularity is quite weak and consequently the estimates for its location and the associated exponents are quite inaccurate. The singularity is located at $p_{-}=-0.5168(5)$ and the associated exponents are $\gamma=0.065(15), v_{\|}=0.97(3)$ and $2 v_{\perp}=0.90(15)$. It is quite possible that the divergence of the cluster length series at $p_{-}$is logarithmic and the estimates are certainly consistent with $\gamma=0, \nu_{\|}=1$ and $\nu_{\perp}=\frac{1}{2}$. Finally there is some weak evidence of a pair of singularities in the complex $p$-plane at $p_{ \pm}=-0.2255(15) \pm 0.440(1) i$. Note that this singularity pair also lies within the physical disc. The exponent estimates at $p_{ \pm}$are not very accurate. The cluster size series seems to converge with exponent $\gamma \simeq-3$, while $\nu_{\|} \simeq 1$ and $\nu_{\perp} \simeq \frac{1}{2}$, but the error on these estimates are as large as $25-50 \%$.

### 4.2. The square site series

In table 4 I have listed some of the estimates for $p_{c}$ and critical exponents obtained from an analysis of the square site series. The estimates are based on approximants using at least 85-90 terms with $N_{c}=15$. Though the length of the series is comparable to the bond case the estimates are generally less accurate. In particular it should be noted that the $p_{c}$-estimates obtained from different series are only marginally consistent leading to the rather poor estimate, $p_{c}=0.7054850(15)$, which is at least an order of magnitude less accurate than in the bond case. Some exponent estimates differ significantly from those of the bond case. Particularly $\gamma$ and $\gamma+2 \nu_{\|}$are generally quite a bit smaller than the bond estimates. However, due to the discrepancy between the various site series, the importance of this deviation is questionable. If the error-bar on $p_{c}$ is accepted, the resulting exponent estimates from the site series will agree with the bond estimates.

If one accepts the exponent estimates from the bond series one can use the linear dependence between $p_{c}$ and exponent estimates to obtain improved estimates for $p_{c}$. (This is just the reverse of the method used in the previous section to obtain the exponent estimates.) By performing a linear fit of the $p_{c}$-estimates as a function of the deviation of the exponent estimate from the central values listed in the previous section I obtain the estimate $p_{c}=0.7054853(5)$. In these fits I used the approximants whose exponent estimates differ by less than 0.001 from the central values. This estimate agrees with that obtained from the percolation-probability series [6] $p_{c}=0.705485(5)$.

The square site series have a singularity on the negative axis closer to the origin then $p_{c}$. In this case the singularity appears to be stronger than in the bond case, i.e. the various estimates are better converged. The singularity is located at $p_{-}=-0.4519522(3)$ and the associated exponents are quite possibly consistent with $\gamma=-\frac{1}{2}$ (i.e. the cluster-size series converges), $\nu_{\|}=1$ and $v_{\perp}=\frac{1}{2}$. There is firm evidence of a pair of singularities in the complex $p$-plane at $p_{ \pm}=-0.2263(1) \pm 0.3847(1) \mathrm{i}$, which is within the physical disc. The exponent estimates at this pair of singularities are quite accurate. The cluster-size series seems to converge, with $\gamma \simeq-3$, while $\nu_{\|} \simeq 1$ and $\nu_{\perp} \simeq \frac{1}{2}$, where errors on the estimates are only a few per cent.

### 4.3. The triangular bond series

Table 5 lists a selection of estimates for $p_{c}$ and critical exponents obtained from the analysis of the triangular bond series. The estimates are based on approximants using at least 45 or

Table 4. Estimates of $p_{c}$ and critical exponents for the square site problem.

| $L$ | First-order DA |  |  | Second-order DA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $p_{c}$ | $\gamma$ | $N_{a}$ | $p_{c}$ | $\gamma$ | $N_{a}$ |
| 0 | 0.705483 90(20) | $2.276850(66)$ | 19 | 0.70548500 (26) | 2.277 51(15) | 17 |
| 5 | $0.70548409(20)$ | 2.276924(88) | 23 | $0.70548516(28)$ | 2.277 60(18) | 18 |
| 10 | 0.70548441 (35) | 2.277 21(30) | 24 | $0.70548472(19)$ | $2.277334(95)$ | 17 |
| 15 | $0.705484594(68)$ | 2.277 232(33) | 23 | $0.70548471(14)$ | $2.277314(74)$ | 19 |
| 20 | $0.705484805(72)$ | $2.277364(39)$ | 24 | $0.70548486(36)$ | $2.27742(25)$ | 20 |
| 25 | $0.705484723(82)$ | 2.277319 (46) | 20 | $0.705484671(58)$ | $2.277295(35)$ | 16 |
| 30 | $0.705484811(34)$ | $2.277367(18)$ | 21 | $0.705484689(29)$ | $2.277306(16)$ | 16 |
| 35 | $0.705484850(62)$ | $2.277389(31)$ | 21 | $0.705484713(83)$ | 2.277313(39) | 17 |
| $L$ | $p_{c}$ | $\nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\nu_{\\|}$ | $N_{a}$ |
| 0 | 0.70548449 (93) | 1.733 47(25) | 19 | $0.70548496(30)$ | $1.73370(10)$ | 16 |
| 5 | 0.70548427 (28) | 1.733 416(72) | 23 | 0.70548491 (23) | 1.733 686(84) | 16 |
| 10 | $0.70548485(36)$ | 1.733 66(14) | 20 | $0.705485020(95)$ | $1.733729(25)$ | 16 |
| 15 | $0.70548513(26)$ | 1.733763 (88) | 23 | 0.70548491 (34) | $1.73369(12)$ | 18 |
| 20 | $0.70548565(53)$ | 1.733 97(20) | 22 | $0.70548480(17)$ | $1.733650(66)$ | 19 |
| 25 | $0.70548575(33)$ | $1.73403(12)$ | 23 | 0.70548470 (21) | 1.733 608(93) | 17 |
| 30 | 0.705485 60(63) | 1.733 96(28) | 19 | 0.70548443 (26) | $1.73350(11)$ | 16 |
| 35 | $0.70548545(43)$ | 1.733 88(17) | 24 | $0.70548452(21)$ | 1.733 548(84) | 16 |
| $L$ | $p_{c}$ | $2 v_{\perp}$ | $N_{a}$ | $p_{c}$ | $2 v_{\perp}$ | $N_{a}$ |
| 0 | $0.7054869(13)$ | $2.19445(46)$ | 19 | $0.70548650(23)$ | $2.19433(21)$ | 19 |
| 5 | $0.70548687(57)$ | $2.19447(16)$ | 19 | $0.70548647(23)$ | $2.19434(13)$ | 16 |
| 10 | 0.7054851 (15) | 2.193 97(33) | 21 | $0.70548649(12)$ | $2.194254(51)$ | 16 |
| 15 | $0.7054857(10)$ | $2.19400(39)$ | 19 | $0.70548577(24)$ | $2.194033(76)$ | 20 |
| 20 | $0.7054866(16)$ | $2.19434(53)$ | 19 | $0.70548589(42)$ | $2.19406(13)$ | 21 |
| 25 | 0.7054860 (10) | $2.19412(42)$ | 19 | $0.70548585(24)$ | 2.194048 (81) | 17 |
| 30 | 0.7054860 (12) | $2.19410(45)$ | 20 | $0.70548560(65)$ | 2.193 91(28) | 18 |
| 35 | $0.7054862(13)$ | $2.19408(53)$ | 20 | $0.70548515(78)$ | $2.19376(31)$ | 17 |
| $L$ | $p_{c}$ | $\gamma+\nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\gamma+\nu_{\\|}$ | $N_{a}$ |
| 0 | $0.70548365(38)$ | $4.00989(23)$ | 19 | $0.70548403(70)$ | $4.01023(58)$ | 18 |
| 5 | 0.70548381 (17) | $4.01000(12)$ | 23 | $0.70548438(33)$ | $4.01047(39)$ | 16 |
| 10 | $0.70548385(42)$ | $4.01005(29)$ | 25 | 0.70548441 (34) | $4.01055(30)$ | 16 |
| 15 | 0.705483 62(55) | 4.009 94(38) | 24 | 0.705484 30(51) | $4.01046(44)$ | 21 |
| 20 | 0.70548349 (30) | $4.00979(20)$ | 19 | $0.70548424(34)$ | $4.01041(28)$ | 18 |
| 25 | 0.705483 80(43) | $4.01006(30)$ | 22 | $0.70548450(65)$ | $4.01067(65)$ | 21 |
| 30 | 0.705483 80(21) | 4.009 99(14) | 21 | $0.70548428(21)$ | $4.01043(18)$ | 16 |
| 35 | $0.70548378(61)$ | $4.01002(43)$ | 23 | 0.70548447 (33) | $4.01061(32)$ | 19 |
| $L$ | $p_{c}$ | $\gamma+2 \nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\gamma+2 \nu_{\\|}$ | $N_{a}$ |
| 0 | $0.70548358(35)$ | $5.74311(21)$ | 19 | $0.70548460(45)$ | $5.74420(51)$ | 19 |
| 5 | $0.70548355(20)$ | $5.74307(14)$ | 19 | $0.70548443(18)$ | $5.74400(20)$ | 17 |
| 10 | $0.70548404(60)$ | 5.743 58(65) | 23 | $0.70548434(18)$ | 5.743 92(21) | 17 |
| 15 | 0.705483 82(10) | 5.743 299(94) | 19 | $0.70548431(52)$ | 5.743 90(62) | 20 |
| 20 | $0.70548379(15)$ | $5.74327(14)$ | 22 | $0.70548415(22)$ | $5.74369(24)$ | 18 |
| 25 | $0.70548375(16)$ | 5.743 21(13) | 22 | $0.70548400(10)$ | 5.743 52(10) | 16 |
| 30 | 0.705483 68(16) | $5.74317(14)$ | 19 | 0.705484 22(25) | $5.74377(30)$ | 16 |
| 35 | $0.70548387(24)$ | 5.743 34(22) | 25 | $0.70548474(65)$ | 5.74449 (85) | 19 |

Table 4. (Continued)

|  | First-order DA |  |  | Second-order DA |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $L$ | $p_{c}$ | $\gamma+2 v_{\perp}$ | $N_{a}$ |  | $p_{c}$ | $\gamma+2 v_{\perp}$ | $N_{a}$ |
| 0 | $0.7054838(33)$ | $4.4729(94)$ | 19 |  | $0.70548457(13)$ | $4.47071(10)$ | 20 |
| 5 | $0.70548458(16)$ | $4.47069(11)$ | 19 |  | $0.70548460(10)$ | $4.470740(93)$ | 16 |
| 10 | $0.70548463(16)$ | $4.47072(10)$ | 20 |  | $0.70548457(11)$ | $4.470695(93)$ | 19 |
| 15 | $0.70548477(19)$ | $4.47084(15)$ | 19 |  | $0.70548473(27)$ | $4.47084(25)$ | 21 |
| 20 | $0.70548443(43)$ | $4.47061(26)$ | 20 |  | $0.70548472(17)$ | $4.47081(15)$ | 17 |
| 25 | $0.70548449(47)$ | $4.47066(30)$ | 20 |  | $0.70548480(49)$ | $4.47089(45)$ | 19 |
| 30 | $0.70548475(42)$ | $4.47087(37)$ | 19 |  | $0.7054842(13)$ | $4.4704(11)$ | 17 |
| 35 | $0.70548469(22)$ | $4.47078(18)$ | 19 |  | $0.7054851(13)$ | $4.4713(12)$ | 20 |

40 terms with $N_{c}=15$ or 10 for first and second order, respectively. As one would expect, due to the shorter series, the estimates are generally encumbered with larger errors than was the case for the square bond series. The estimates for $\nu_{\|}$and $2 v_{\perp}$ are generally consistent with those from the square bond series, while the remaining exponent estimates exceeds those from the square bond case. The linear fit of $p_{c}$ to the deviation of the exponent estimates from the values favoured by the square bond series yields $p_{c}=0.478025(1)$, which is in excellent agreement with the estimate $p_{c}=0.47802$ (1) from the percolationprobability series [7]. The triangular bond series does not appear to have any non-physical singularities.

### 4.4. The triangular site series

In table 6 I have listed some estimates for $p_{c}$ and critical exponents obtained from an analysis of the triangular site series similar to that for the bond problem. In this case all exponent estimates are consistent with the square bond case. The biased estimate for $p_{c}$ based on the usual fitting procedure is $p_{c}=0.5956468(5)$ in excellent agreement with the estimate $p_{c}=0.5956472(10)$ from the percolation probability series [7]. Again there is no compelling evidence for non-physical singularities.

## 5. Summary and discussion

From the analysis presented in the previous section it was clear that the square bond series yield by far the most accurate $p_{c}$-estimates which in turn enables one to obtain very precise estimates for the critical exponents. The remaining cases yielded less accurate estimates. Though the square site and triangular bond cases tended to yield exponent estimates only marginally consistent with the square bond estimates, the $p_{c}$ estimates showed less consistency among the various series. In the square site case this could possibly be caused by the presence of rather strong non-physical singularities closer to the origin than $p_{c}$. The triangular site estimates, though marred by larger error-bars, were fully consistent with the square bond estimates. I have therefore chosen to base my final exponent estimates mainly on the square bond series.

From figure 2 it would appear that the estimate $p_{c}=0.64470015(5)$ is fully consistent with the data and not overly optimistic. With this highly accurate $p_{c}$ value one can obtain very accurate exponent estimates using the values listed in (4.3). The values of the critical exponents for the average cluster size, parallel and perpendicular connectedness lengths are

Table 5. Estimates of $p_{c}$ and critical exponents for the triangular bond problem.

| $L$ | First-order DA |  |  | Second-order DA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $p_{c}$ | $\gamma$ | $N_{a}$ | $p_{c}$ | $\gamma$ | $N_{a}$ |
| 0 | $0.4780268(13)$ | 2.278 50(35) | 21 | $0.47802548(13)$ | 2.277 976(80) | 15 |
| 4 | $0.47802596(10)$ | $2.278170(47)$ | 16 | $0.47802578(42)$ | $2.27809(21)$ | 14 |
| 8 | $0.47802614(10)$ | 2.278 242(64) | 16 | 0.478025 60(16) | $2.278054(48)$ | 11 |
| 12 | $0.47802602(42)$ | 2.278 19(14) | 20 | $0.47802579(27)$ | 2.278 093(91) | 14 |
| 16 | $0.47802599(29)$ | 2.278 19(10) | 18 | $0.47802605(50)$ | 2.278 20(19) | 17 |
| $L$ | $p_{c}$ | $\nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\nu_{\\|}$ | $N_{a}$ |
| 0 | 0.478027 2(19) | $1.73435(30)$ | 17 | $0.47802624(79)$ | $1.73413(18)$ | 17 |
| 4 | $0.4780255(10)$ | $1.73404(33)$ | 17 | $0.47802585(59)$ | $1.73404(17)$ | 12 |
| 8 | $0.47802551(57)$ | 1.733 98(16) | 16 | $0.4780264(10)$ | $1.73417(30)$ | 15 |
| 12 | 0.478025 6(18) | $1.73403(53)$ | 19 | $0.47802536(79)$ | 1.733 92(22) | 11 |
| 16 | $0.4780244(25)$ | $1.73365(65)$ | 18 | 0.4780273 (19) | $1.73441(52)$ | 15 |
| $L$ | $p_{c}$ | $2 v_{\perp}$ | $N_{a}$ | $p_{c}$ | $2 v_{\perp}$ | $N_{a}$ |
| 0 | 0.478027 16(70) | $2.19429(16)$ | 18 | $0.4780260(10)$ | $2.19389(23)$ | 17 |
| 4 | $0.47802683(80)$ | $2.19420(15)$ | 17 | $0.4780261(17)$ | 2.193 95(54) | 14 |
| 8 | $0.47802474(53)$ | $2.19355(15)$ | 16 | 0.4780246 (12) | $2.19355(33)$ | 14 |
| 12 | $0.4780251(28)$ | $2.19367(71)$ | 18 | $0.4780244(12)$ | 2.193 49(36) | 14 |
| 16 | $0.4780247(11)$ | $2.19354(35)$ | 17 | 0.478025 22(40) | $2.19369(11)$ | 11 |
| $L$ | $p_{c}$ | $\gamma+\nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\gamma+\nu_{\\|}$ | $N_{a}$ |
| 0 | $0.47802676(52)$ | 4.012 59(28) | 18 | $0.47802665(24)$ | 4.012 624(79) | 13 |
| 4 | $0.47802670(47)$ | 4.012 61(14) | 20 | $0.47802686(12)$ | 4.012 693(33) | 13 |
| 8 | $0.47802645(51)$ | 4.012 51(22) | 19 | $0.47802666(17)$ | 4.012 649(45) | 11 |
| 12 | $0.47802612(59)$ | $4.01236(30)$ | 17 | $0.47802653(68)$ | $4.01244(54)$ | 16 |
| 16 | $0.47802622(45)$ | $4.01243(21)$ | 16 | $0.47802682(16)$ | $4.012688(36)$ | 11 |
| $L$ | $p_{c}$ | $\gamma+2 \nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\gamma+2 \nu_{\\|}$ | $N_{a}$ |
| 0 | $0.4780254(17)$ | 5.7456(17) | 17 | $0.4780264(16)$ | 5.7464(14) | 13 |
| 4 | $0.4780251(10)$ | 5.745 66(95) | 19 | $0.4780266(24)$ | 5.7460(20) | 13 |
| 8 | $0.4780252(11)$ | 5.7457(11) | 17 | $0.4780264(19)$ | 5.7461(16) | 17 |
| 12 | $0.47802566(33)$ | $5.74623(26)$ | 16 | $0.4780254(10)$ | 5.7457(11) | 16 |
| 16 | 0.478025 88(78) | $5.74633(52)$ | 18 | $0.4780263(18)$ | 5.7463(12) | 17 |
| $L$ | $p_{c}$ | $\gamma+2 \nu_{\perp}$ | $N_{a}$ | $p_{c}$ | $\gamma+2 \nu_{\perp}$ | $N_{a}$ |
| 0 | $0.47802616(38)$ | 4.472 28(18) | 16 | $0.47802585(24)$ | $4.47204(14)$ | 13 |
| 4 | $0.47802632(82)$ | $4.47234(41)$ | 17 | $0.47802570(52)$ | $4.47191(33)$ | 14 |
| 8 | 0.478025 89(47) | $4.47214(23)$ | 17 | $0.47802637(54)$ | $4.47235(31)$ | 11 |
| 12 | 0.478025 66(48) | $4.47196(31)$ | 18 | $0.47802624(50)$ | 4.472 28(31) | 13 |
| 16 | $0.47802618(31)$ | $4.47228(15)$ | 17 | $0.47802610(42)$ | 4.472 18(23) | 12 |

estimated by $\gamma=2.27769(4), \nu_{\|}=1.733825(25)$ and $\nu_{\perp}=1.096844(14)$, respectively. An improved estimate for the percolation probability exponent is obtained from the scaling relation $\beta=\left(v_{\|}+v_{\perp}-\gamma\right) / 2=0.27649(4)$. As already noted these estimates are generally incompatible with the exact fractions conjectured by Essam et al [4]. Only $\gamma$ is marginally consistent with the suggested fraction, $\gamma=41 / 18=2.77777 \ldots$, if a larger error-bar were adopted for $p_{c}$.

Table 6. Estimates of $p_{c}$ and critical exponents for the triangular site problem.

| $L$ | First-order DA |  |  | Second-order DA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $p_{c}$ | $\gamma$ | $N_{a}$ | $p_{c}$ | $\gamma$ | $N_{a}$ |
| 0 | $0.59564731(31)$ | 2.277 848(67) | 16 | $0.59564598(71)$ | 2.277 49(16) | 18 |
| 4 | 0.59564641 (30) | 2.277 597(79) | 18 | $0.5956465(13)$ | 2.277 55(64) | 16 |
| 8 | $0.59564664(41)$ | $2.27767(12)$ | 18 | $0.59564681(10)$ | 2.277 708(28) | 12 |
| 12 | $0.59564653(27)$ | 2.277 628(81) | 16 | $0.59564667(20)$ | 2.277 672(64) | 13 |
| 16 | $0.59564684(78)$ | $2.27772(22)$ | 18 | $0.59564659(32)$ | 2.277 662(84) | 12 |
| $L$ | $p_{c}$ | $\nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\nu_{\\|}$ | $N_{a}$ |
| 0 | $0.59564656(15)$ | 1.733766 (15) | 16 | $0.59564675(45)$ | $1.733796(53)$ | 15 |
| 4 | $0.5956454(11)$ | 1.733 58(18) | 16 | $0.59564662(60)$ | $1.73378(11)$ | 11 |
| 8 | $0.5956459(88)$ | $1.7336(17)$ | 16 | 0.5956448 (32) | 1.733 44(74) | 11 |
| 12 | 0.5956476 (31) | $1.73407(68)$ | 16 | $0.5956457(13)$ | $1.73361(29)$ | 11 |
| 16 | $0.5956507(29)$ | $1.73477(65)$ | 16 | $0.5956432(58)$ | $1.7328(15)$ | 15 |
| $L$ | $p_{c}$ | $2 v_{\perp}$ | $N_{a}$ | $p_{c}$ | $2 \nu_{\perp}$ | $N_{a}$ |
| 0 | 0.595 650(12) | 2.1943(37) | 16 | $0.5956470(38)$ | 2.1938(12) | 14 |
| 4 | $0.5956555(49)$ | 2.1958(11) | 16 | 0.595647 7(10) | 2.193 97(25) | 11 |
| 8 | $0.5956489(14)$ | $2.19425(30)$ | 17 | 0.595647 53(88) | $2.19397(24)$ | 11 |
| 12 | $0.5956469(73)$ | 2.1938(15) | 16 | $0.5956457(22)$ | 2.193 57(42) | 12 |
| 16 | 0.5956473 (10) | $2.19387(22)$ | 16 | $0.5956485(18)$ | $2.19411(37)$ | 16 |
| $L$ | $p_{c}$ | $\gamma+\nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\gamma+\nu_{\\|}$ | $N_{a}$ |
| 0 | $0.5956435(26)$ | $4.01006(80)$ | 18 | $0.5956453(22)$ | 4.0108(10) | 15 |
| 4 | 0.5956446 (16) | $4.01036(54)$ | 16 | 0.595647 6(46) | 4.0122(24) | 17 |
| 8 | $0.59564542(67)$ | 4.010 64(27) | 17 | 0.595647 29(73) | 4.011 68(46) | 11 |
| 12 | 0.595644 89(48) | $4.01041(20)$ | 16 | 0.595647 19(88) | 4.011 68(49) | 11 |
| 16 | $0.59564495(28)$ | $4.01047(10)$ | 17 | $0.5956450(12)$ | $4.01057(55)$ | 11 |
| $L$ | $p_{c}$ | $\gamma+2 \nu_{\\|}$ | $N_{a}$ | $p_{c}$ | $\gamma+2 \nu_{\\|}$ | $N_{a}$ |
| 0 | 0.595648 4(66) | 5.7469(60) | 17 | 0.595644 4(17) | 5.743 86(91) | 11 |
| 4 | 0.5956440 (29) | 5.7437(10) | 16 | $0.5956442(28)$ | 5.7438(16) | 12 |
| 8 | $0.5956492(45)$ | 5.7468(31) | 18 | 0.595643 2(32) | 5.7433(12) | 13 |
| 12 | $0.5956463(37)$ | $5.7448(24)$ | 17 | $0.5956462(20)$ | 5.7448(13) | 12 |
| 16 | $0.5956457(15)$ | 5.74440 (85) | 17 | $0.5956465(13)$ | $5.74502(80)$ | 12 |
| $L$ | $p_{c}$ | $\gamma+2 v_{\perp}$ | $N_{a}$ | $p_{c}$ | $\gamma+2 \nu_{\perp}$ | $N_{a}$ |
| 0 | $0.5956477(11)$ | 4.471 67(39) | 16 | 0.595647 15(31) | 4.471 61(13) | 12 |
| 4 | $0.59564748(19)$ | 4.471776 (73) | 17 | 0.595647 06(43) | $4.47156(17)$ | 14 |
| 8 | $0.59564749(26)$ | 4.471770 (98) | 17 | 0.595647 24(29) | 4.471 64(12) | 12 |
| 12 | 0.595647 56(33) | $4.47179(12)$ | 16 | $0.59564744(81)$ | $4.47170(29)$ | 14 |
| 16 | 0.595647 58(42) | $4.47180(15)$ | 17 | 0.595647 29(15) | 4.471 670(61) | 12 |

Below I have listed improved estimates for a number of critical exponents obtained using various scaling relations.

$$
\begin{aligned}
& \Delta=\beta+\gamma=2.55418(8) \\
& \tau=v_{\|}-\beta=1.45734(7) \\
& z=v_{\|} / v_{\perp}=1.58074(4)
\end{aligned}
$$

$$
\begin{aligned}
& \gamma^{\prime}=\gamma-v_{\|}=0.54386(7) \\
& \delta=\beta / \nu_{\|}=0.15947(3) \\
& \eta=\gamma / v_{\|}-1=0.31368(4)
\end{aligned}
$$

Here $\Delta$ is the exponent characterizing the scale of the cluster size distribution, $\tau$ is the cluster length exponent, $z$ is the dynamical critical exponent, $\gamma^{\prime}$ the exponent characterizing the steady-state fluctuations of the order parameter, while $\delta$ and $\eta$ characterize the behaviour at $p_{c}$ as $t \rightarrow \infty$ of the survival probability and average number of particles, respectively.

Assuming that the exponent estimates from the square bond case are correct, improved $p_{c}$-estimates were obtained for the three other problems studied in this paper. These are:

$$
\begin{array}{lr}
p_{c}=0.7054853(5) & \text { square site } \\
p_{c}=0.478025(1) & \text { triangular bond } \\
p_{c}=0.5956468(5) & \text { triangular site. }
\end{array}
$$

Finally I note, that the analysis of the various series, in order to determine the value of the confluent exponent, yielded estimates consistent with $\Delta_{1} \simeq 1$. Thus there is no evidence of non-analytic confluent correction terms. This provides a hint that the models might be exactly solvable.

## E-mail or WWW retrieval of series

The series and the coefficients in the extrapolation formulae for the directed percolation problems on the various lattices can be obtained via e-mail by sending a request to iwan@maths.mu.oz.au or via the world wide web on the URL http://www.maths.mu.oz.au/iiwan/ by following the relevant links.

## Acknowledgments

I would like to thank G X Viennot for providing the reference to the article by Shapiro. The series enumerations were performed on the Intel Paragon parallel computer at the University of Melbourne. The work was supported by a grant from the Australian Research Council.

## Appendix. The extrapolation formulae and series for the square site, triangular bond and triangular site problems

## A.1. The square site problem

The sequence determining the first correction term for $S^{N}$ starts out as

$$
s_{t, 0}=1,0,1,2,6,18,57,186,622,2120,7338, \ldots
$$

from which one sees that $2 s_{t, 0}+s_{t-1,0}=C_{t-1}$. Shapiro [15] has given an interpretation of this sequence by adding diagonals in a certain Catalan triangle.

At first glance one might find it strange that the correction term differs from the bond case, since clearly all the non-nodal bond graphs that give rise to the first correction term have their counterparts as site graphs. In the following I shall always be talking only of non-nodal graphs consisting of two equal-length paths. The reason for the difference is quite simply that for some graphs the $d$-weight in (3.3) is 0 for the site graph but non-zero for the bond graph. A schematic representation of such a graph is shown in figure A1. A proof of this was given by Arrowsmith and Essam [16], who showed that $d(g)$ is non-zero


Figure A1. Schematic pictorial representation of a non-nodal graph which contributes to $S^{N}$ in the bond problem but not in the site problem.
if and only if $g$ is coverable by a set of directed paths and has no circuit (or loop). From figure A1 we see that in the bond case the graph obtained by putting in the bonds a-b and $\mathrm{c}-\mathrm{d}$ has no loops. However, in the site case there is a loop from the origin to point d and this graph does, therefore, not contribute in the site case. On the other hand it is clear that for any contributing site graph there is a corresponding contributing bond graph. So the contributing site graphs form a subset of the bond graphs.

In order to prove the formula for $s_{t, 0}$ it is convenient to give another interpretation of the loop-free non-nodal graphs. Let us first characterize the graphs by the distance $k$ between the paths. Since the graphs start and end with $k=0$, and the distance zero appears nowhere else along the graph, these two 'steps' can be deleted. It is clear that in each step (increase of $t$ by one) $k$ changes by 0 or $\pm 1$. When $k$ is unchanged there are two configurations corresponding to both paths moving either south-east or south-west, while for changes of $\pm 1$ there is just one configuration. The non-nodal graphs are thus in bijection with paths of length $t-1$ starting and ending at the ground level, which can take north-east, east and south-east steps, and where east steps come in two varieties or colours (such paths are known as two-colour Motzkin paths). It is one of the fundamental results of combinatorics that the number of two-colour Motzkin paths of length $n-1$ is $C_{n}$. It is easy to see that loop-free non-nodal graphs form the subset where the distance between paths is never 1 twice in a row, i.e. if $k_{n}=1$ then $k_{n+1}=2$. These graphs are in bijection with two-colour Motzkin paths with no east steps on the ground level.


Figure A2. Typical two-colour Motzkin path with no east steps on the ground level.

Figure A2 shows an example of a two-colour Motzkin path with no east steps on the ground level. It is clear that all paths formed by taking the parts of the original path lying one level above the ground level (those above the dotted line), are ordinary unrestricted two-
colour Motzkin paths, and these paths are therefore enumerated by the Catalan numbers. The number of no-loop non-nodal graphs can therefore be expressed in terms of Catalan numbers, by summing over the number of times $m$ the associated restricted two-colour Motzkin path meets the ground level prior to the terminal point. Let $D_{n}$ denote the number of two-colour Motzkin paths of length $n$ with no east steps on the ground level. The number of such two-colour Motzkin paths, $D_{n, 0}$, which does not hit the ground level prior to $n$ is simply $C_{n-1}$ because the path obtained by deleting the first and last step is an ordinary two-colour Motzkin path of length $n-2$. The number of restricted two-colour Motzkin paths $D_{n, 1}$ which hit the ground level once is,

$$
D_{n, 1}=\sum_{k=0}^{n-4} C_{k+1} C_{n-4-k+1}=\sum_{i+j=n-2} C_{i} C_{j} \quad i, j \geqslant 1 .
$$

This formula is simply obtained by noting that the path to the left of the point where the restricted path meets the ground level for the first time can have a length $k$ ranging from 0 to $n-4$ (the four steps connecting the ground level to the level above are discarded) while the length of the second path is $n-4-k$. Obviously the number of left and right paths are just $C_{k+1}$ and $C_{n-4-k+1}$, independently, which leads to the formula above once we sum over the length of the left path. The generalization to $D_{n, m}$ is obvious

$$
D_{n, m}=\sum_{i_{1}+i_{2}+\cdots+i_{m}=n-m-1} C_{i_{1}} C_{i_{2}} \cdots C_{i_{m}} \quad i_{1}, \ldots, i_{m} \geqslant 1, m \leqslant\lfloor n / 2\rfloor-1 .
$$

The sum $D_{n}=\sum_{m=0}^{\lfloor n / 2\rfloor-1} D_{n, m}$ is exactly the same as that obtained by Shapiro [15] by adding diagonals in the Catalan triangle.

The higher-order correction terms are quite complicated though still expressible as linear functions of $s_{t, 0}$,
$2^{r}(r+1)!s_{t, r}=\sum_{k=1}^{n_{a}} a_{r, k} s_{t-r+k-1,0}+\sum_{k=1}^{r}\binom{t-r}{k}\left[b_{r, k}\left(s_{t-r-1,0}+2 s_{t-r, 0}\right)+c_{r, k} s_{t-r, 0}\right]$
where $n_{a}=r-1+\max (\lfloor r / 2\rfloor, 2)$. This representation leads to particularly simple coefficients $c_{r, k}$, since $c_{r, r-m} 2^{4} /(r+1)$ ! are expressible as polynomials in $r$ of order $m$ for $r>m$.

The sequence determining the first correction term for $X^{N}$ starts out as

$$
x_{t, 0}=0,0,0,2,8,34,136,538,2112,8264, \ldots
$$

In this case $x_{t, 0}=u(t+1)$ is determined by the following recurrence relation

$$
\begin{array}{cccc}
u(0)=0 & u(1)=0 & u(2)=0 \quad u(3)=2 \quad u(4)=8 \\
u(t+5)=[(2+4 t) u(t)+(10+13 t) u(t+1)+(63 / 2+25 / 2 t) u(t+2) \\
+(4+2 t) u(t+3)+(-53 / 2-11 / 2 t) u(t+4)] /(t+6)
\end{array}
$$

The formulae for the higher-order correction terms are complicated though still expressible as functions of $x_{t, 0}$,

$$
\begin{align*}
6^{r+1}(r+1)!x_{t, r} & =\sum_{k=0}^{2 r} a_{r, k} x_{t-r+k-3,0}+\sum_{k=1}^{r}\binom{t-r}{k}\left[b_{r, k} x_{t-r-4,0}+c_{r, k} x_{t-r-3,0}\right] \\
+ & (t-r)\left(\left[d_{r, 1}+(t-r-1) d_{r, 2} / 2\right] x_{t-r-2,0}\right. \\
+ & {\left.\left[d_{r, 3}+(t-r-1) d_{r, 4} / 2\right] x_{t-r-1,0}\right) } \tag{A.2}
\end{align*}
$$

Table A1. New series terms for the directed square lattice site problem

|  |  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  |
| :---: | :---: |
|  |  <br>  <br>  <br>  <br>  <br>  <br>  - <br>  |
|  | 和和 <br>  <br>  <br>  <br>  <br>  <br>  <br>  |
| 5 |  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  |
|  |  |

Table A2. New series terms for the directed triangular lattice bond problem.

| $n$ | $S(p)$ | $\mu_{0,1}(p)$ | $\mu_{0,2}(p)$ | $\mu_{2,0}(p)$ |
| :---: | :---: | :---: | :---: | :---: |
| 26 | 5337497418 | 209994728977 | 28038948604228 | 357799862456 |
| 27 | 11678931098 | 487411142729 | 68883587787794 | 841629097226 |
| 28 | 25513719388 | 1127362924089 | 168327542017154 | 1972059110234 |
| 29 | 55663119018 | 2599086582635 | 409289987873146 | 4604235247626 |
| 30 | 121272163372 | 5973768053766 | 990554419328610 | 10713215525118 |
| 31 | 263864408629 | 13690809855903 | 2386824242808628 | 24848543707616 |
| 32 | 573556848773 | 31292824198260 | 5727568988920190 | 57462309456098 |
| 33 | 1245063650267 | 71342703947141 | 13690818307565964 | 132505664249544 |
| 34 | 2700144659216 | 162261360324560 | 32605625326065898 | 304737782904598 |
| 35 | 5851221147909 | 368214693911431 | 77383096278813208 | 699075297747540 |
| 36 | 12660942847609 | 833758529144166 | 183049343643929384 | 1599836631974088 |
| 37 | 27392697005550 | 1884144109110908 | 431652603971595032 | 3652954620022208 |
| 38 | 59166631983818 | 4249400422872492 | 1014868412269977442 | 8322867118585614 |
| 39 | 127777294036668 | 9566581135474702 | 2379355385563105336 | 18923690215681768 |
| 40 | 275696162276153 | 21499276492272919 | 5563403530205036262 | 42943367206142286 |
| 41 | 594048482357433 | 48233388196399900 | 12974964525963569978 | 97265602603253438 |
| 42 | 1281000979206493 | 108047966744458962 | 30186354559080349712 | 219921104676935224 |
| 43 | 2755074940142431 | 241645525989717809 | 70064113568387529280 | 496383864923234468 |
| 44 | 5932229201093542 | 539692019601879166 | 162259519144323831762 | 1118569140266192598 |
| 45 | 12754620464996577 | 1203634572376367923 | 374966937946540768796 | 2516752401957810240 |
| 46 | 27393502356280237 | 2680685119486373279 | 864732112976429729296 | 5653852976905997716 |
| 47 | 58904482286533364 | 5963270787963481223 | 1990292162650597920198 | 12683846242039392030 |
| 48 | 126300979513067199 | 13247560344786965319 | 4572211932174265999574 | 28413833808390157526 |
| 49 | 271153388225432487 | 29397708611765878122 | 10484509048736986795242 | 63570493940799673654 |
| 50 | 581799707017985602 | 65162373599194694838 | 23999926816621820432406 | 142041285657057320738 |
| 51 | 1245200040883711881 | 144265291339186480170 | 54845072436992120826262 | 316981854770124968722 |
| 52 | 2672296117689586731 | 319107834898349284317 | 125131020334445948974496 | 706573223473121970044 |
| 53 | 5721610946798161890 | 705067186518337735671 | 285043213836022414418910 | 1573161190417955836862 |
| 54 | 12219537226294787605 | 1556202374122366410976 | 648336112166418027074000 | 3498618026159745044592 |
| 55 | 26278769763797603705 | 3432580531634699049051 | 1472529893791471135605612 | 7773224302066420178488 |
| 56 | 55868130245151778098 | 7561145873732448408790 | 3339705956678263537822184 | 17250739435533913221856 |
| 57 | 120005563753505676014 | 16647643650693934045389 | 7564345024108961163420714 |  |

Table A3. New series terms for the directed triangular lattice site problem.

| $n$ | $S(p)$ | $\mu_{0,1}(p)$ | $\mu_{0,2}(p)$ | $\mu_{2,0}(p)$ |
| ---: | ---: | ---: | ---: | ---: |
| 27 | 31086416 | 2537201920 | 180162619784 | 3493604968 |
| 28 | 54484239 | 4696226432 | 351465799212 | 6578499844 |
| 29 | 95220744 | 8662963994 | 682372429474 | 12255365130 |
| 30 | 166451010 | 15938662652 | 1319072709540 | 22945871212 |
| 31 | 290209573 | 29236920460 | 2539112346126 | 42418505522 |
| 32 | 506071134 | 53506963048 | 4868795865052 | 79065895100 |
| 33 | 880465145 | 97662175022 | 9301026350316 | 145071334272 |
| 34 | 1532283109 | 177894354832 | 17707215868596 | 269543696068 |
| 35 | 2660274891 | 323249218548 | 33597579475250 | 490798690662 |
| 36 | 4621898737 | 586336769144 | 63552411513904 | 910306336312 |
| 37 | 8009846706 | 1061171804692 | 119850074633534 | 1644056437386 |
| 38 | 13891471400 | 1917510976440 | 225393528150372 | 3049141333676 |
| 39 | 24041215812 | 3457940539676 | 422719590219566 | 5456382479138 |
| 40 | 41625532064 | 6226878220792 | 790809981499104 | 10141493117240 |
| 41 | 71931529791 | 11192318698210 | 1475724176635586 | 17948875370594 |
| 42 | 124411612350 | 2009269205896 | 2747568614463200 | 33532113165512 |
| 43 | 214621391390 | 36004956808838 | 5103796857539224 | 58529997237324 |
| 44 | 370839553549 | 64452114092524 | 9460996104306040 | 110351718228800 |
| 45 | 639024696294 | 115182948294020 | 17501002169903066 | 189161996834038 |
| 46 | 1102419174084 | 205638719322044 | 32311701334358584 | 361978973535312 |
| 47 | 1898477439658 | 366587483305266 | 59540588349689460 | 605431024385712 |
| 48 | 3271434676999 | 652904591166608 | 109522752581367792 | 1185609582832608 |
| 49 | 5624820363027 | 1161134164194872 | 201098347347198582 | 1916175057214282 |
| 50 | 9693710116271 | 2063632450148240 | 368654569738994916 | 3885789400216356 |
| 51 | 16634472160666 | 3661795173290544 | 674667552855892942 | 5981962784372730 |
| 52 | 28649053574116 | 6494555752892524 | 1232887441544215856 | 12779152925915688 |
| 53 | 49158925607599 | 11502147999885690 | 2249412773359085386 | 18336104911125754 |
| 54 | 84477695445892 | 20358932047872636 | 4098441587758882072 | 42326707460800448 |
| 55 | 144947819272120 | 35990408059294200 | 7456350674610337790 | 54742323913847946 |
| 56 | 249148051950911 | 63598870606450408 | 13548513117372733000 |  |
|  |  |  |  |  |

From the polynomials for $S^{N}\left(t_{\max }\right)$ and $X^{N}\left(t_{\max }\right)$ with $t_{\max }=47$, and using the extrapolation formulae, I extended the series for $S(p), \mu_{0,1}(p)$ and $\mu_{0,2}(p)$ to order 106 and the series for $\mu_{2,0}(p)$ to order 103. The new series terms are listed in table A1.

## A.2. The triangular bond problem

The correction terms for the triangular bond problem are very simple. The first correction term for $S^{N}$ is just a constant $s_{t, 0}=2$, while the first correction term for $X^{N}$ alternates between 0 and 2 . The non-nodal graphs responsible for these correction terms are almost trivial. It is clear (see figure 1) that the non-nodal graphs terminating at level $t+1$ having the smallest possible number of bonds are those composed of two paths meeting on the centre line ( $t$ odd) or on the site next to the centre-line ( $t$ even), with each path having as few south-east and south-west steps as possible. These sites can be reached by a non-nodal graph with $t+1$ bonds. For $t$ odd the only two such graphs are those consisting of a path with $\lfloor t / 2\rfloor+1$ south steps and a path starting with a south-east (south-west) step followed by $\lfloor t / 2\rfloor$ south steps, while ending with a south-west (south-east) step. For $t$ even, the two graphs are those consisting of a path with $\lfloor t / 2\rfloor$ south steps terminating with a south-east (south-west) step and a path starting with a south-east (south-west) step followed by $\lfloor t / 2\rfloor$
south steps. It is easy to check that any other non-nodal graph contains more bonds. So $s_{t, 0}=2$ while $x_{t, 0}$ alternate between 0 and 2 since for $t$ odd the non-nodal graphs terminate on the centre-line and therefore do not contribute to $X^{N}$.

The sequence determining the second correction terms for $S^{N}$ is

$$
1,2,5,10,17,26,37,50,65, \ldots
$$

from which it is clear that $s_{t, 1}$ grows as a polynomial in $t, s_{t, 1}=t^{2}-2 t+2$. In general the correction terms can be represented as a polynomial in $t$ of order $2 r$. The alternation between odd and even values of $t$ seen in $x_{t, 0}$ eventually also manifests itself in the correction terms for $S^{N}$. The general formulae for the correction term is,
$s_{t, r}=\frac{1}{r!(r+1)!} \sum_{j=0}^{2 r} a_{r, j}(t-1)^{j}+\frac{t \bmod 2}{r!(r+1)!} \sum_{j=0}^{\lfloor(r-3) / 2\rfloor} b_{r, j}(t-1)^{j} \quad t \geqslant 2 r-2$.
The prefactors and the expression of the polynomials in terms of $t-1$ has been chosen to make the leading coefficients particularly simple. Once again it should be noted that the leading coefficients $a_{r, 2 r-m}$ are polynomials in $r$ of order $m+\lfloor m / 2\rfloor$ (this is valid for $m \leqslant 5$ ), which again was used to obtain a few additional correction formulae.

The extrapolation formulae for $X^{N}$ are very similar to the ones above,
$x_{t, r}=\frac{1}{r!(r+1)!} \sum_{j=0}^{2 r} a_{r, j}(t-1)^{j}+\frac{t \bmod 2}{r!(r+1)!} \sum_{j=0}^{r} b_{r, j}(t-1)^{j} \quad t \geqslant 2 r-2$.
In this case the leading coefficients of both $a_{r, 2 r-m}$ and $b_{r, r-m}$ can be predicted. For $r>m$ I find that $a_{r, 2 r-m}$ can be expressed as a polynomial in $r$ of order $\leqslant m+2$. Likewise $(-1)^{r} b_{r, r-m} /(r+1)$ ! is a polynomial in $r$ of order $2 m$ for $r>2 m$.

As stated earlier, the non-nodal contribution to the series for the triangular bond case were calculated up to $t_{\max }=45$. With the extrapolation formulae I derived the series for $S(p), \mu_{0,1}(p)$ and $\mu_{0,2}(p)$ to order 57 and the series for $\mu_{2,0}(p)$ to order 56. The resulting new series terms are listed in table A2.

## A.3. The triangular site problem

In this case the first correction term for $S^{N}$ alternates between 0 and 1 while the first correction term for $X^{N}$ is 0 . The graphs giving rise to these correction terms are very simple. First note that the graphs giving rise to the bond correction terms all have loops when viewed as site graphs. The non-nodal site graphs with fewest elements for $t$ odd consist of the two paths starting with a south-east (south-west) step followed by $\lfloor t / 2\rfloor$ south steps and ending with a south-west (south-east) step. These graphs have $t+2$ random elements (remember that the origin is not a random element). For $t$ even one can easily see that there are no loop-free non-nodal graphs with $t+2$ or fewer elements. This fully accounts for the first correction terms.

The other extrapolation formulae for the triangular site problem are very similar to those for the bond case. The only difference is that the order of the polynomials correcting the odd- $t$ values is somewhat higher. Once again the leading coefficients are low-order polynomials in $r$. With the help of the extrapolation formulae I extended the series for $S(p), \mu_{0,1}(p)$ and $\mu_{0,2}(p)$ to order 56 and the series for $\mu_{2,0}(p)$ to order 55. The new series terms are listed in table A3.

## References

[1] Cardy J 1987 Phase Transitions and Critical Phenomena vol 11, ed C Domb and J Lebowitz (New York: Academic) pp 55-126
[2] Guttmann A J 1989 Phase Transitions and Critical Phenomena vol 13, ed C Domb and J Lebowitz (New York: Academic) pp 1-234
[3] Blease J 1977 J. Phys. A: Math. Gen. 10 917, 3461
[4] Essam J W, Guttmann A J and De'Bell K 1988 J. Phys. A: Math. Gen. 213815
[5] Baxter R J and Guttmann A J 1988 J. Phys. A: Math. Gen. 213193
[6] Jensen I and Guttmann A J 1995 J. Phys. A: Math. Gen. 284813
[7] Jensen I and Guttmann A J 1996 J. Phys. A: Math. Gen. 29497
[8] Domany E and Kinzel W 1984 Phys. Rev. Lett. 53311
[9] Essam J W 1972 Phase Transitions and Critical Phenomena vol 2, ed C Domb and M S Green (New York: Academic) pp 197-270
[10] Bhatti F M and Essam J W 1984 J. Phys. A: Math. Gen. 17 L67
[11] Knuth D E 1969 Seminumerical Algorithms (The Art of Computer Programming 2) (Reading, MA: AddisonWesley)
[12] Delest M-P and Viennot X G 1984 Theoret. Comput. Sci. 34169
[13] Lin K Y and Chang S J 1988 J. Phys. A: Math. Gen. 212635
[14] Essam J W and Guttmann A J 1995 Phys. Rev. E 525849
[15] Shapiro L W 1976 Discrete Math. 1483
[16] Arrowsmith D K and Essam J W 1977 J. Math. Phys. 18235


[^0]:    $\dagger$ E-mail address: iwan@maths.mu.oz.au

